Surds

Formulas & techniques

Multiplication:

$ \sqrt{a} \times \sqrt{a} = $ $ \phantom{.} a $

$ \sqrt{a} \times \sqrt{b} = $ $ \sqrt{a \times b} $

Example

Simplify $\sqrt{52}$ .

$ \sqrt{52} = $ $ \sqrt{4} \times \sqrt{13} = 2 \sqrt{13} $


Division:

$ { \sqrt{a} \over \sqrt{b} }= $ $ \sqrt{a \over b} $

Example

Simplify $ \sqrt{1.75} $.

$ \sqrt{1.75} = $ $ \sqrt{7 \over 4} = { \sqrt{7} \over \sqrt{4} } = { \sqrt{7} \over 2 } $


Identities for expansion:

$ (a + b)^2 = $ $ a^2 + 2ab + b^2 $

$ (a - b)^2 = $ $ a^2 - 2ab + b^2 $

$ (a + b)(a - b) = $ $ a^2 - b^2 $


Rationalise denominator (one term):

$ {2 \over 3 \sqrt{5}} \times $ $ {\sqrt{5} \over \sqrt{5}} = {2\sqrt{5} \over 3(5)} = {2\sqrt{5} \over 15} $


Rationalise denominator (two terms):

$ {1 \over 4 + \sqrt{5}} \times $ $ {4 - \sqrt{5} \over 4 - \sqrt{5}} = {4 - \sqrt{5} \over (4)^2 - (\sqrt{5})^2} = {4 - \sqrt{5} \over 11} $


Questions

Find the value of unknown constants

Q1. Given that $ {\sqrt{20} + \sqrt{32} \over \sqrt{20} - \sqrt{32}} = a + b \sqrt{10}$, find the value of the rational numbers $a$ and $b$.

Note: Rational numbers are numbers that can be expressed as a fraction

Answer: $ a = -{13 \over 3}, b = -{4 \over 3} $

Solutions


Q2. Find the possible values of the real numbers $a$ and $b$ such that $(a + \sqrt{3})(10 - b\sqrt{27}) = 28 + 16 \sqrt{3}$.

(from A Maths 360 2nd edition Ex 3.2)

Answer: $ a = 1, b = -2 \text{ or } a = {9 \over 5}, b = - {10 \over 9} $

Solutions


Geometry problem

Geometry formulas from E Maths (usually not provided):

$ \text{Area of triangle} = {1 \over 2} \times b \times h $

$ \text{Area of trapezium} = {1 \over 2} \times \text{Sum of parallel sides} \times h $

$ \text{Area of circle} = \pi r^2 $

$ \text{Circumference of circle} = 2\pi r = \pi d $


$ \text{Volume of cuboid} = l \times b \times h $

$ \text{Volume of cylinder} = \pi r^2 h $

$ \text{Volume of cone} = {1 \over 3} \pi r^2 h $

$ \text{Curved surface area of cone} = \pi r l $

$ \text{Volume of pyramid} = {1 \over 3} \times \text{Base area} \times h $

$ \text{Volume of sphere} = {4 \over 3} \pi r^3 $

$ \text{Surface area of sphere} = 4 \pi r^2 $


Q3. A right circular cone has a vertical height of $(2\sqrt{3} - \sqrt{2})$ cm and a slant height of $l$ cm. The volume of the cone is $(\sqrt{18} + \sqrt{48})\pi$ cm3. Without using a calculator, express $l^2$ in the form $(a - b \sqrt{6})$ cm2, where $a$ and $b$ are integers.

(from A Maths 360 2nd edition Ex 3.1)

Answer: $ (23 - \sqrt{6}) \text{ cm}^2 $

Solutions


Quadratic equation

Q4. Find the exact solutions of the equation $x^2 + 6x - 10 = 0$.

Answer: $ x = -3 \pm \sqrt{19} $

Solutions


Q5. Given that $-2 + \sqrt{14}$ is a root of the equation $x^2 + ax + b = 0$, where $a$ and $b$ are integers, find the value of $a$ and of $b$.

Answer: $ a = 4, b =-10 $

Solutions


Solve equation involving surds

Q6. Solve the equation $ 2x + 3 = \sqrt{2} (x + 1) $, leaving the answer in the form $a + b \sqrt{2}$, where $a$ and $b$ are real numbers.

Answer: $ x = -2 - {1 \over 2} \sqrt{2} $

Solutions


Q7. Solve the equation $\sqrt{x - 3} + 5 = x$.

(Note: Remember to check whether the solution(s) satisfy the original equation!)

Answer: $ x = 7 $

Solutions


Past year O level questions

Year & paper Comments
2021 P1 Question 1 Geometry problem involving a rectangle
2019 P1 Question 10b Geometry problem involving a cylinder (formula not provided)
2018 P1 Question 4a Quadratic equation
2018 P1 Question 4b Geometry problem involving a rectangle
2017 P1 Question 7 Geometry problem involving a triangle (need to use trigonometry formulas from E maths)
2016 P1 Question 2 Geometry problem involving a cuboid
2015 P2 Question 5 Geometry problem involving a cuboid
2014 P2 Question 4 Geometry problem involving rectangle and square
2013 P2 Question 8a Rationalise denominator
2012 P1 Question 12ii Find the value of unknown constants
2011 P1 Question 10 Geometry problem involving a rectangle
2009 P1 Question 3 Solve equation involving surds
2007 P1 Question 2 Rationalise denominator
2006 P2 Question 9a Simplify expression
2005 P1 Question 3 Geometry problem involving a cuboid
2004 P2 Question 2 Solve equation involving surds
2003 P1 Question 4 Geometry problem involving a cuboid
2002 P2 Question 3 Simplify expression