Formulas & techniques
Multiplication:
$ \sqrt{a} \times \sqrt{a} = $ $ \phantom{.} a $
$ \sqrt{a} \times \sqrt{b} = $ $ \sqrt{a \times b} $
Example
Simplify $\sqrt{52}$ .
$ \sqrt{52} = $ $ \sqrt{4} \times \sqrt{13} = 2 \sqrt{13} $
Division:
$ { \sqrt{a} \over \sqrt{b} }= $ $ \sqrt{a \over b} $
Example
Simplify $ \sqrt{1.75} $.
$ \sqrt{1.75} = $ $ \sqrt{7 \over 4} = { \sqrt{7} \over \sqrt{4} } = { \sqrt{7} \over 2 } $
Identities for expansion:
$ (a + b)^2 = $ $ a^2 + 2ab + b^2 $
$ (a - b)^2 = $ $ a^2 - 2ab + b^2 $
$ (a + b)(a - b) = $ $ a^2 - b^2 $
Rationalise denominator (one term):
$ {2 \over 3 \sqrt{5}} \times $ $ {\sqrt{5} \over \sqrt{5}} = {2\sqrt{5} \over 3(5)} = {2\sqrt{5} \over 15} $
Rationalise denominator (two terms):
$ {1 \over 4 + \sqrt{5}} \times $ $ {4 - \sqrt{5} \over 4 - \sqrt{5}} = {4 - \sqrt{5} \over (4)^2 - (\sqrt{5})^2} = {4 - \sqrt{5} \over 11} $
Questions
Find the value of unknown constants
Q1. Given that $ {\sqrt{20} + \sqrt{32} \over \sqrt{20} - \sqrt{32}} = a + b \sqrt{10}$, find the value of the rational numbers $a$ and $b$.
Note: Rational numbers are numbers that can be expressed as a fraction
Answer: $ a = -{13 \over 3}, b = -{4 \over 3} $
Solutions
\begin{align}
{ \sqrt{20} + \sqrt{32} \over \sqrt{20} - \sqrt{32} }
& = { \sqrt{4} \sqrt{5} + \sqrt{16} \sqrt{2} \over \sqrt{4} \sqrt{5} - \sqrt{16} \sqrt{2} } \\
& = {2 \sqrt{5} + 4 \sqrt{2} \over 2 \sqrt{5} - 4 \sqrt{2}}
\times { 2 \sqrt{5} + 4 \sqrt{2} \over 2 \sqrt{5} + 4 \sqrt{2} } \\
& = { (2 \sqrt{5} + 4 \sqrt{2})^2 \over (2 \sqrt{5})^2 - (4 \sqrt{2})^2 }
\phantom{0000000000000000000} [(a - b)(a + b) = a^2 - b^2] \\
& = { (2\sqrt{5})^2 + 2(2\sqrt{5})(4\sqrt{2}) + (4\sqrt{2})^2 \over -12}
\phantom{000000} [(a + b)^2 = a^2 + 2ab + b^2] \\
& = { 20 + 16 \sqrt{10} + 32 \over -12} \\
& = { 52 + 16 \sqrt{10} \over -12} \\
& = { 52 \over -12} + {16 \sqrt{10} \over -12} \\
& = -{13 \over 3} - {4 \sqrt{10} \over 3} \\
& = -{13 \over 3} - {4 \over 3} \sqrt{10} \\
\\
\therefore a & = -{13 \over 3}, b = -{4 \over 3}
\end{align}
Q2. Find the possible values of the real numbers $a$ and $b$ such that $(a + \sqrt{3})(10 - b\sqrt{27}) = 28 + 16 \sqrt{3}$.
(from A Maths 360 2nd edition Ex 3.2)
Answer: $ a = 1, b = -2 \text{ or } a = {9 \over 5}, b = - {10 \over 9} $
Solutions
\begin{align*}
(a + \sqrt{3}) (10 - b\sqrt{27}) & = 10a - ab \sqrt{27} + 10\sqrt{3} - (\sqrt{3})(b\sqrt{27}) \\
& = 10a - ab (\sqrt{9} \times \sqrt{3}) + 10\sqrt{3} - b\sqrt{81} \\
& = 10a - ab (3)\sqrt{3} + 10\sqrt{3} - b(9) \\
& = 10a - 3ab \sqrt{3} + 10\sqrt{3} - 9b \\
& = 10a - 9b + (10 - 3ab)\sqrt{3} \\
\\
\text{Comparing with } & 28 + 16\sqrt{3}, \\
10a - 9b & = 28 \phantom{000} \text{--- (1)} \\
\\
10 - 3ab & = 16 \\
-3ab & = 16 - 10 \\
-3ab & = 6 \\
ab & = {6 \over -3} \\
ab & = -2 \\
a & = -{2 \over b} \phantom{000} \text{--- (2)} \\
\\
\text{Substitute } & \text{(2) into (1),} \\
10 \left(-{2 \over b}\right) - 9b & = 28 \\
-{20 \over b} - 9b & = 28 \\
-20- 9b^2 & = 28b \\
-9b^2 -28b - 20 & = 0 \\
9b^2 + 28b + 20 & = 0 \\
(9b + 10)(b + 2) & = 0 \\
\\
9b + 10 = 0 \phantom{000} & \text{ or } b + 2 = 0 \\
9b = -10 \phantom{(} & \phantom{000000} b = - 2 \\
b = -{10 \over 9} & \phantom{000000} b = - 2 \\
\\
\text{Substitute } & b = -{10 \over 9} \text{ into (2),} \\
a & = -{2 \over -{10 \over 9}} \\
a & = {9 \over 5} \\
\\
\text{Substitute } & b = -2 \text{ into (2),} \\
a & = -{2 \over -2} \\
a & = 1
\end{align*}
$$ a = 1, b = -2 \text{ or } a = {9 \over 5}, b = - {10 \over 9} $$
Geometry problem
Geometry formulas from E Maths (usually not provided):
$ \text{Area of triangle} = {1 \over 2} \times b \times h $
$ \text{Area of trapezium} = {1 \over 2} \times \text{Sum of parallel sides} \times h $
$ \text{Area of circle} = \pi r^2 $
$ \text{Circumference of circle} = 2\pi r = \pi d $
$ \text{Volume of cuboid} = l \times b \times h $
$ \text{Volume of cylinder} = \pi r^2 h $
$ \text{Volume of cone} = {1 \over 3} \pi r^2 h $
$ \text{Curved surface area of cone} = \pi r l $
$ \text{Volume of pyramid} = {1 \over 3} \times \text{Base area} \times h $
$ \text{Volume of sphere} = {4 \over 3} \pi r^3 $
$ \text{Surface area of sphere} = 4 \pi r^2 $
Q3. A right circular cone has a vertical height of $(2\sqrt{3} - \sqrt{2})$ cm and a slant height of $l$ cm. The volume of the cone is $(\sqrt{18} + \sqrt{48})\pi$ cm3. Without using a calculator, express $l^2$ in the form $(a - b \sqrt{6})$ cm2, where $a$ and $b$ are integers.
(from A Maths 360 2nd edition Ex 3.1)
Answer: $ (23 - \sqrt{6}) \text{ cm}^2 $
Solutions
\begin{align*}
\text{Volume} & = (\sqrt{18} + \sqrt{48}) \pi \\
& = ( \sqrt{9} \times \sqrt{2} + \sqrt{16} \times \sqrt{3}) \pi \\
& = ( 3\sqrt{2} + 4\sqrt{3})\pi \\
\\
\text{Volume of cone} & = {1 \over 3} \pi r^2 h \\
(3\sqrt{2} + 4\sqrt{3})\pi & = {1 \over 3} \pi r^2 (2\sqrt{3} - \sqrt{2}) \\
(3\sqrt{2} + 4\sqrt{3}) & = {1 \over 3} r^2 (2\sqrt{3} - \sqrt{2}) \\
3(3\sqrt{2} + 4\sqrt{3}) & = r^2 ( 2\sqrt{3} - \sqrt{2}) \\
9\sqrt{2} + 12\sqrt{3} & = r^2 ( 2\sqrt{3} - \sqrt{2} ) \\
{9 \sqrt{2} + 12\sqrt{3} \over 2\sqrt{3} - \sqrt{2}} & = r^2
\end{align*}
\begin{align*}
r^2 & = { 9\sqrt{2} + 12\sqrt{3} \over 2\sqrt{3} - \sqrt{2}} \times {2\sqrt{3} + \sqrt{2} \over 2\sqrt{3} + \sqrt{2}} \\
& = { (9\sqrt{2} +12\sqrt{3})(2\sqrt{3} + \sqrt{2}) \over (2\sqrt{3} - \sqrt{2})(2\sqrt{3} + \sqrt{2})} \\
& = { (9\sqrt{2})(2\sqrt{3}) + (9\sqrt{2})(\sqrt{2}) + (12\sqrt{3})(2\sqrt{3}) + (12\sqrt{3})(\sqrt{2}) \over (2\sqrt{3})^2 - (\sqrt{2})^2 } \\
& = { 18\sqrt{6} + 9(2) + 24(3) + 12\sqrt{6} \over (4)(3) - 2} \\
& = { 30\sqrt{6} + 90 \over 10} \\
& = { 10( 3\sqrt{6} + 9 ) \over 10} \\
& = 3\sqrt{6} + 9
\end{align*}
\begin{align*}
\text{By Pythagoras theorem, } l^2 & = r^2 + h^2 \\
l^2 & = (3\sqrt{6} + 9) + (2\sqrt{3} - \sqrt{2})^2 \\
& = 3\sqrt{6} + 9 + (2\sqrt{3})^2 - 2(2\sqrt{3})(\sqrt{2}) + (\sqrt{2})^2 \\
& = 3\sqrt{6} + 9 + (4)(3) - 4\sqrt{6} + 2 \\
& = (23 - \sqrt{6}) \text{ cm}^2
\end{align*}
Quadratic equation
Q4. Find the exact solutions of the equation $x^2 + 6x - 10 = 0$.
Answer: $ x = -3 \pm \sqrt{19} $
Solutions
\begin{align}
x^2 & + 6x - 10 = 0 \\
\\
x & = {-b \pm \sqrt{b^2 - 4ac} \over 2a} \\
& = {-6 \pm \sqrt{(6)^2 - 4(1)(-10)} \over 2(1)} \\
& = {-6 \pm \sqrt{76} \over 2} \\
& = {-6 \pm \sqrt{4} \sqrt{19} \over 2} \\
& = {-6 \pm 2 \sqrt{19} \over 2} \\
& = {-6 \over 2} \pm {2 \sqrt{19} \over 2} \\
& = -3 \pm \sqrt{19}
\end{align}
Q5. Given that $-2 + \sqrt{14}$ is a root of the equation $x^2 + ax + b = 0$, where $a$ and $b$ are integers, find the value of $a$ and of $b$.
Answer: $ a = 4, b =-10 $
Solutions
\begin{align}
x^2 + ax + b & = 0 \\
\\
\text{Let } x = -2 & + \sqrt{14}, \\
(-2 + \sqrt{14})^2 + a(-2 + \sqrt{14}) + b & = 0 \\
\underbrace{ (-2)^2 + 2(-2)(\sqrt{14}) + (\sqrt{14})^2}_{ (a + b)^2 = a^2 + 2ab + b^2}
- 2a + a \sqrt{14} + b & = 0 \\
4 - 4 \sqrt{14} + 14 & = 2a - b - a \sqrt{14} \\
18 - 4 \sqrt{14} & = 2a - b - a \sqrt{14} \\
\\
\text{Comparing } & \text{coefficients,}
\end{align}
\begin{align}
18 & = 2a - b &&& -a & = -4 \\
b & = 2a - 18 &&& a & = 4 \\
b & = 2(4) - 18 \\
b & = -10
\end{align}
Solve equation involving surds
Q6. Solve the equation $ 2x + 3 = \sqrt{2} (x + 1) $, leaving the answer in the form $a + b \sqrt{2}$, where $a$ and $b$ are real numbers.
Answer: $ x = -2 - {1 \over 2} \sqrt{2} $
Solutions
\begin{align}
2x + 3 & = \sqrt{2} (x + 1) \\
2x + 3 & = x \sqrt{2} + \sqrt{2} \\
2x - x \sqrt{2} & = \sqrt{2} - 3 \\
x(2 - \sqrt{2}) & = \sqrt{2} - 3 \\
x & = { \sqrt{2} - 3 \over 2 - \sqrt{2} } \times {2 + \sqrt{2} \over 2 + \sqrt{2}}
\phantom{000000} [\text{Rationalise denominator}] \\
x & = { 2 \sqrt{2} + 2 - 6 - 3 \sqrt{2} \over (2)^2 - (\sqrt{2})^2 }
\phantom{000000} [(a - b)(a + b) = a^2 - b^2] \\
x & = { -4 - \sqrt{2} \over 2} \\
x & = {-4 \over 2} - {\sqrt{2} \over 2} \\
x & = -2 - {1 \over 2} \sqrt{2}
\end{align}
Q7. Solve the equation $\sqrt{x - 3} + 5 = x$.
(Note: Remember to check whether the solution(s) satisfy the original equation!)
Answer: $ x = 7 $
Solutions
\begin{align}
\sqrt{x - 3} + 5 & = x \\
\sqrt{x - 3} & = x - 5 \\
x - 3 & = (x - 5)^2 \\
x - 3 & = x^2 - 2(x)(5) + 5^2
\phantom{000000} [(a - b)^2 = a^2 - 2ab + b^2] \\
x - 3 & = x^2 - 10x + 25 \\
0 & = x^2 - 11x + 28 \\
0 & = (x - 4)(x - 7)
\end{align}
\begin{align}
x - 4 & = 0 && \text{ or } & x - 7 & = 0 \\
x & = 4 &&& x & = 7 \\
\\
\text{Substitute } & \text{into original eqn,} &&& \text{Substitute } & \text{into original eqn,} \\
\text{L.H.S} & = \sqrt{4 - 3} + 5 &&& \text{L.H.S} & = \sqrt{7 - 3} + 5 \\
& = 6 &&& & = 7 \\
\\
\text{R.H.S} & = 4 &&& \text{R.H.S} & = 7 \\
\\
\therefore \text{Reject } & x = 4 &&& \therefore x & = 7
\end{align}
Past year O level questions
Year & paper |
Comments |
2021 P1 Question 1 |
Geometry problem involving a rectangle |
2019 P1 Question 10b |
Geometry problem involving a cylinder (formula not provided) |
2018 P1 Question 4a |
Quadratic equation |
2018 P1 Question 4b |
Geometry problem involving a rectangle |
2017 P1 Question 7 |
Geometry problem involving a triangle (need to use trigonometry formulas from E maths) |
2016 P1 Question 2 |
Geometry problem involving a cuboid |
2015 P2 Question 5 |
Geometry problem involving a cuboid |
2014 P2 Question 4 |
Geometry problem involving rectangle and square |
2013 P2 Question 8a |
Rationalise denominator |
2012 P1 Question 12ii |
Find the value of unknown constants |
2011 P1 Question 10 |
Geometry problem involving a rectangle |
2009 P1 Question 3 |
Solve equation involving surds |
2007 P1 Question 2 |
Rationalise denominator |
2006 P2 Question 9a |
Simplify expression |
2005 P1 Question 3 |
Geometry problem involving a cuboid |
2004 P2 Question 2 |
Solve equation involving surds |
2003 P1 Question 4 |
Geometry problem involving a cuboid |
2002 P2 Question 3 |
Simplify expression |