Shape and features of graph
$$ \text{General equation: } y = a \sin bx + c $$
Shape and features when a > 0 (click to show):
\begin{align*}
\text{Center line: } & y = c \\
\\
\text{Amplitude} & = a \\
\\
\text{Period} & = {360^\circ \over b} = {2\pi \text{ radians} \over b}
\end{align*}
Shape and features when a < 0 (click to show):
\begin{align*}
\text{Center line: } & y = c \\
\\
\text{Amplitude} & = \text{Positive value of } a \\
\\
\text{Period} & = {360^\circ \over b} = {2\pi \text{ radians} \over b}
\end{align*}
Questions
Deduce equation from graph
Q1. The diagram below shows the graph of $y = a \sin (bx) + c $.
Determine the values of $a$, $b$ and $c$.
(from A Maths 360 Workbook Ex 11.3)
Answer: $ a = 2, b = 2, c = 1 $
Solutions
\begin{align}
\text{Center line: } & y = 1 \\
c & = 1 \\
\\
\text{Amplitude} & = 2 \\
a & = 2 \\
\\
\text{Period} & = 180^\circ \\
{360^\circ \over b} & = 180^\circ \\
360 & = 180b \\
{360 \over 180} & = b \\
2 & = b \\
\\ \\
\therefore a = 2, b & = 2, c = 1
\end{align}
Q2. The diagram below shows the graph of $y = a \sin (bx) + c $.
Determine the values of $a$, $b$ and $c$.
(from A Maths 360 Workbook Ex 11.3)
Answer: $ a = -2, b = 2, c = 0 $
Solutions
\begin{align*}
\text{Center line: } & y = 0 \\
c & = 0 \\
\\
\text{Amplitude} & = 2 \\
a & = -2 \\
\\
\text{Period} & = \pi \\
{2\pi \over b} & = \pi \\
2\pi & = \pi b \\
2 & = b \\
\\ \\
\therefore a = -2, b & = 2, c = 0
\end{align*}
Deduce equation from information
Q3. The function $f(x) = a \sin x + b$, where $a$ is a non-zero integer, has a maximum value of $5$ and a minimum value of $-9$. Find the value(s) of $a$ and of $b$.
Answer: $ a = \pm 7, b = -2 $
(from think! A Maths Workbook Worksheet 9B)
Solutions
\begin{align}
y & = a \sin x + b \\
\\
\text{Center line: } y & = {5 + (-9) \over 2} \\
y & = -2 \\
\\
\text{Amplitude} & = 5 - (-2) \\
& = 7 \\
\\
\therefore a & = \pm 7, b = -2
\end{align}
Sketch question
Q4. Sketch the graph of $y = 2 \sin {\pi x \over 3} + 3 $, for $ 0 \le x \le 9 $.
Solutions
\begin{align*}
y & = 2 \sin {\pi x \over 3} + 3 \\
y & = 2 \sin \left({\pi \over 3} x \right) + 3 \phantom{000000}[ y = a \sin bx + c] \\
\\
\text{Amplitude} & = 2 \\
\\
\text{Center line: } & y = 3 \\
\\
\text{Max. value} & = 3 + 2 = 5 \\
\text{Min. value} & = 3 - 2 = 1 \\
\\
\text{Period} & = {2\pi \over {\pi \over 3}}
\phantom{0000000000000000} [\text{Note } x \text{ is in radians}] \\
& = 2\pi \div {\pi \over 3} \\
& = {2\pi \over 1} \times {3 \over \pi} \\
& = {6 \pi \over \pi} \\
& = 6
\end{align*}
Deduce number of solutions to equation
Q5(i) On the same diagram, sketch the graph of $y = 3 \sin 2x$ and $y = 3 - {2x \over \pi}$ for $ 0 \le x \le 2 \pi $.
Solutions
\begin{align*}
y & = 3 \sin 2x \\
\\
\text{Amplitude} & = 3 \\
\text{Max. value} & = 3 \\
\text{Min. value} & = -3 \\
\\
\text{Period} & = {2\pi \over 2} = \pi \\
\\ \\
y & = 3 - {2x \over \pi} \\
y & = 3 - {2 \over \pi} x \\
y & = - {2 \over \pi} x + 3 \phantom{000000} [\text{Straight line } y = mx + c] \\
\\
\text{Let } & x = 0, \\
y & = -{2 \over \pi} (0) + 3 \\
y & = 3 \phantom{00000000000000} [y \text{-intercept}] \\
\\
\text{Let } & y = 0, \\
0 & = -{2 \over \pi} x + 3 \\
{2 \over \pi} x & = 3 \\
2x & = 3 \pi \\
x & = {3\pi \over 2} \phantom{000000000000.} [x \text{-intercept}]
\end{align*}
Q5(ii) Hence, state the number of solutions to the equation $ {2x \over 3\pi} = 1 - \sin 2x $ for $ 0 \le x \le 2\pi$.
Answer: $ 5 \text{ solutions} $
Solutions
\begin{align*}
{2x \over 3\pi} & = 1 - \sin 2x \\
{2x \over \pi} & = 3(1 - \sin 2x) \\
{2x \over \pi} & = 3 - 3 \sin 2x \\
\underbrace{3 \sin 2x}_\text{Curve} & = \underbrace{3 - {2x \over \pi}}_\text{Straight line} \\
\\
\text{From sketch, } & \text{there are 5 solutions}
\end{align*}
Past year O level questions
Year & paper |
Comments |
2023 P2 Question 7bi |
Minimum value of graph |
2022 P1 Question 10 |
Sketch graph |
2021 P1 Question 7 |
Deduce equation from graph |
Specimen P1 Question 2 |
Sketch graph |
2019 P1 Question 12 |
Sketch graph and deduce number of solutions to equation |
2017 P2 Question 10 |
Sketch graph and deduce number of solutions to inequality |
2014 P2 Question 9 |
Sketch graph and deduce solutions to equation |
2013 P2 Question 6 |
Deduce equation from information and sketch graph |
2010 P2 Question 11i |
Deduce coordinates of maximum point and minimum point from graph (Link - Subscription required) |
2009 P1 Question 9 |
Sketch graph |
2006 P1 Question 2 |
Deduce equation from graph |
2005 P2 Question 4 |
Sketch graph |
← Plane geometry
Trigonometry: Cosine graph →
    (Subscription required)