A Maths Textbook Solutions >> Additional Maths 360 Solutions >>
Ex 11.2
Please email me if you spot any mistakes or have any questions.
Solutions
Click to display or to hide
\begin{align} \text{Length of } OP & = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \\ & = \sqrt{ (-1 - 0)^2 + (-\sqrt{3} - 0)^2} \\ & = 2 \text{ units} \end{align}
\begin{align} \sin 240^\circ & = {Opp \over Hyp} \\ & = {-\sqrt{3} \over 2} \\ & = -{\sqrt{3} \over 2} \\ \\ \cos 240^\circ & = {Adj \over Hyp} \\ & = {-1 \over 2} \\ & = -{1 \over 2} \\ \\ \tan 240^\circ & = {Opp \over Adj} \\ & = {-\sqrt{3} \over -1} \\ & = \sqrt{3} \\ \\ \sec 240^\circ & = {1 \over \cos 240^\circ} \\ & = {1 \over -{1 \over 2}} \\ & = -2 \\ \\ \text{cosec } 240^\circ & = {1 \over \sin 240^\circ} \\ & = {1 \over -{\sqrt{3} \over 2}} \\ & = -{2 \over \sqrt{3}} \\ \\ \cot 240^\circ & = {1 \over \tan 240^\circ} \\ & = {1 \over \sqrt{3}} \end{align}
(a)
Negative as the angle is in the third quadrant (T)
(b)
Positive as the angle is in the fourth quadrant (C)
(c)
Negative as the angle is in the fourth quadrant (C)
(d)
Positive as the angle is in the second quadrant (S)
(e)
Negative as the angle $ \left( {3\pi \over 4} = 135^\circ \right) $ is in the second quadrant (S)
(f)
Positive as the angle $ \left( {9\pi \over 8} = 202.5^\circ \right) $ is in the third quadrant (T)
(a)
\begin{align} \cos 330^\circ & = \cos 30^\circ \phantom{00000000} [\alpha = 360^\circ - 330^\circ = 30^\circ] \\ & = {\sqrt{3} \over 2} \end{align}
(b)
\begin{align} \sin 225^\circ & = -\sin 45^\circ \phantom{00000000} [\alpha = 225^\circ - 180^\circ = 45^\circ] \\ & = -{1 \over \sqrt{2}} \end{align}
(c)
\begin{align} \sin {5\pi \over 6} & = \sin {\pi \over 6} \phantom{00000000} \left[ \alpha = \pi - {5\pi \over 6} = {\pi \over 6} \right]\\ & = {1 \over 2} \end{align}
(d)
\begin{align} \tan (-45^\circ) & = -\tan 45^\circ \\ & = -1 \end{align}
(e)
\begin{align} \cos (-150^\circ) & = -\cos 30^\circ \phantom{00000000} [\alpha = 180^\circ - 150^\circ = 30^\circ] \\ & = - {\sqrt{3} \over 2} \end{align}
(f)
\begin{align} \tan \left(-{2\pi \over 3}\right) & = \tan {\pi \over 3} \phantom{00000000} \left[ \alpha = \pi - {2\pi \over 3} = {\pi \over 3}\right] \\ & = \sqrt{3} \end{align}
(a)
\begin{align} \sin \theta & = -0.2 \phantom{000000} [\text{3rd or 4th quadrant since } \sin \theta < 0] \\ \\ \text{Basic angle, } \alpha & = \sin^{-1} (0.2) \\ & = 11.54^\circ \end{align}
\begin{align} \theta & = 180^\circ + 11.54^\circ, 360^\circ - 11.54^\circ \\ & = 191.54^\circ, 348.46^\circ \\ & \approx 191.5^\circ, 348.5^\circ \end{align}
(b)
\begin{align} \tan \theta & = -3 \phantom{000000} [\text{2nd or 4th quadrant since } \tan \theta < 0]\\ \\ \text{Basic angle, } \alpha & = \tan^{-1} (3) \\ & = 71.57^\circ \end{align}
\begin{align} \theta & = 180^\circ - 71.57^\circ, 360^\circ - 71.57^\circ \\ & = 108.43^\circ, 288.43^\circ \\ & \approx 108.4^\circ, 288.4^\circ \end{align}
(c) Note answer must be in radians
\begin{align} \cos \theta & = {1 \over \sqrt{2}} \phantom{000000} [\text{1st & 4th quadrant since } \cos \theta > 0] \\ \\ \text{Basic angle, } \alpha & = \cos^{-1} \left(1 \over \sqrt{2}\right) \\ & = {\pi \over 4} \end{align}
\begin{align} \theta & = {\pi \over 4}, 2\pi - {\pi \over 4} \\ & = {\pi \over 4}, {7\pi \over 4} \end{align}
(d) Note answer must be in radians
\begin{align} \cos \theta & = -0.7 \phantom{000000} [\text{2nd & 3rd quadrant since } \cos \theta < 0]\\ \\ \text{Basic angle, } \alpha & = \cos^{-1} (0.7) \\ & = 0.79539 \end{align}
\begin{align} \theta & = \pi - 0.79539, \pi + 0.79539 \\ & = 2.3462, 3.9369 \\ & \approx 2.35, 3.94 \end{align}
(e)
\begin{align} \tan^2 \theta & = 3 \\ \tan \theta & = \pm \sqrt{3} \phantom{000000} [\text{All 4 quadrants}] \\ \\ \text{Basic angle, } \alpha & = \tan^{-1} (\sqrt{3}) \\ & = 60^\circ \end{align}
\begin{align} \theta & = 60^\circ, 180^\circ - 60^\circ, 180^\circ + 60^\circ, 360^\circ - 60^\circ \\ & = 60^\circ, 120^\circ, 240^\circ, 300^\circ \end{align}
(f) Note answer must be in radians
\begin{align} 3\sin^2 \theta & = 2 \\ \sin^2 \theta & = {2 \over 3} \\ \sin \theta & = \pm \sqrt{2 \over 3} \phantom{000000} [\text{All 4 quadrants}] \\ \\ \text{Basic angle, } \alpha & = \sin^{-1} \left(\sqrt{2 \over 3}\right) \\ & = 0.95531 \end{align}
\begin{align} \theta & = 0.95531, \pi - 0.95531, \pi + 0.95531, 2\pi - 0.95531 \\ & = 0.95531, 2.1862, 4.0969, 5.3278 \\ & \approx 0.955, 2.19, 4.10, 5.33 \end{align}
(a)
\begin{align} \tan A & = -{8 \over 15} \\ {Opp \over Adj} & = {8 \over -15} \end{align}
\begin{align} x & = \sqrt{(8)^2 + (15)^2} \\ & = 17 \\ \\ \cos A & = {Adj \over Hyp} \\ & = {-15 \over 17} \\ & = -{15 \over 17} \\ \\ \sin A & = {Opp \over Hyp} \\ & = {8 \over 17} \end{align}
(b)
\begin{align} \sin B & = -{2 \over \sqrt{5}} \phantom{000000} [\text{3rd quadrant since } \sin B < 0] \\ {Opp \over Hyp} & = {-2 \over \sqrt{5}} \end{align}
\begin{align} x & = \sqrt{ (\sqrt{5})^2 - (2)^2 } \\ & = 1 \\ \\ \cos B & = {Adj \over Hyp} \\ & = {-1 \over \sqrt{5}} \\ & = -{1 \over \sqrt{5}} \\ \\ \cot B & = {1 \over \tan B} \\ & = {1 \over {Opp \over Adj}} \\ & = {1 \over {-2 \over -1}} \\ & = {1 \over 2} \end{align}
\begin{align} \cos A & > 0 \text{ and } \sin A > 0 \\ \\ \implies A & \text{ is in 1st quadrant} \\ \\ \cos A & = {1 \over 2} \\ {Adj \over Hyp} & = {1 \over 2} \end{align}
\begin{align} x & = \sqrt{(2)^2 - (1)^2} \\ & = \sqrt{3} \\ \\ \sin (-A) & = -\sin A \\ & = -{Opp \over Hyp} \\ & = -{\sqrt{3} \over 2} \\ \\ \tan A & = {Opp \over Adj} \\ & = {\sqrt{3} \over 1} \\ & = \sqrt{3} \end{align}
(i)
\begin{align} \tan A & < 0 \text{ and } \cos A > 0 \\ \\ \implies A & \text{ lies in 4th quadrant} \\ \\ \tan A & = -{5 \over 12} \\ {Opp \over Adj} & = {-5 \over 12} \end{align}
\begin{align} x & = \pm \sqrt{(5)^2 + (12)^2} \\ & = 13 \\ \\ \cos (-A) & = \cos A \\ & = {Adj \over Hyp} \\ & = {12 \over 13} \end{align}
(ii)
\begin{align} \tan (-A) & = -\tan A \\ & = - \left(-{5 \over 12}\right) \\ & = {5 \over 12} \end{align}
(iii)
\begin{align} \cos \left({\pi \over 2} - A\right) & = \sin A \\ & = {Opp \over Hyp} \\ & = {-5 \over 13} \\ & = -{5 \over 13} \end{align}
(iv)
\begin{align} \tan \left({\pi \over 2} - A\right) & = {1 \over \tan A} \\ & = {1 \over -{5 \over 12}} \\ & = -{12 \over 5} \end{align}
(i)
\begin{align} \sin 20^\circ & = k \\ {Opp \over Hyp} & = {k \over 1} \end{align}
\begin{align} x & = \sqrt{ (1)^2 - (k)^2 } \\ & = \sqrt{1 - k^2} \\ \\ \sin 200^\circ & = \sin (180^\circ + 20^\circ) \phantom{000000} [\text{Third quadrant, } \sin \theta < 0] \\ & = -\sin 20^\circ \\ & = -k \end{align}
(ii)
\begin{align} \cos 20^\circ & = {Adj \over Hyp} \\ & = {\sqrt{1 - k^2} \over 1} \\ & = \sqrt{1 - k^2} \end{align}
(iii)
\begin{align} \tan (-20^\circ) & = -\tan 20^\circ \\ & = -{Opp \over Adj} \\ & = -{k \over \sqrt{1 - k^2}} \end{align}
(iv)
\begin{align} \text{cosec } 70^\circ & = {1 \over \sin 70^\circ} \\ & = {1 \over \sin (90^\circ - 20^\circ)} \\ & = {1 \over \cos 20^\circ} \phantom{000000000} [\sin (90^\circ - A) = \cos A] \\ & = {1 \over \sqrt{1 - k^2}} \end{align}
(a)
\begin{align} 100 + 71\sec x & = 0 \\ 71\sec x & = -100 \\ 71 \left(1 \over \cos x\right) & = -100 \\ {1 \over \cos x} & = -{100 \over 71} \\ \\ \cos x & = -{71 \over 100} \\ \cos x & = -0.71 \phantom{000000} [\text{2nd or 3rd quadrant}] \\ \\ \text{Basic angle, } \alpha & = \cos^{-1} (0.71) \\ & = 44.77^\circ \end{align}
\begin{align} x & = 180^\circ - 44.77^\circ, 180^\circ + 44.77^\circ \\ & = 135.23^\circ, 224.77^\circ \\ & \approx 135.2^\circ, 244.8^\circ \end{align}
(b)
\begin{align} 5 \cot x + 3 & = 2 + 3\cot x \\ 5 \cos x - 3\cot x & = 2 - 3 \\ 2\cot x & = -1 \\ \cot x & = -{1 \over 2} \\ {1 \over \tan x} & = -{1 \over 2} \\ 2 & = - \tan x \\ \tan x & = -2 \phantom{000000} [\text{2nd or 4th quadrant}] \\ \\ \text{Basic angle, } \alpha & = \tan^{-1} (2) \\ & = 63.43^\circ \end{align}
\begin{align} x & = 180^\circ - 63.43^\circ, 360^\circ - 63.43^\circ \\ & = 116.57^\circ, 296.57^\circ \\ & \approx 116.6^\circ, 296.6^\circ \end{align}
(c)
\begin{align} 5 \cos x & = \sqrt{3} \sin 60^\circ \\ 5 \cos x & = \sqrt{3} \left(\sqrt{3} \over 2\right) \\ 5 \cos x & = {3 \over 2} \\ \cos x & = {3 \over 2} \div 5 \\ \cos x & = {3 \over 10} \\ \cos x & = 0.3 \phantom{00000000} [\text{1st or 4th quadrant}]\\ \\ \text{Basic angle, } \alpha & = \cos^{-1} (0.3) \\ & = 72.54^\circ \end{align}
\begin{align} x & = 72.54^\circ, 360^\circ - 72.54^\circ \\ & = 72.54^\circ, 287.46^\circ \\ & \approx 72.5^\circ, 287.5^\circ \end{align}
(d)
\begin{align} 2 \sin (-x) & = 0.3 \\ \sin (-x) & = 0.3 \div 2 \\ \sin (-x) & = 0.15 \\ -\sin x & = 0.15 \phantom{-00000000} [\sin (-A) = -\sin A] \\ \sin x & = -0.15 \phantom{00000000} [\text{3rd or 4th quadrant}] \\ \\ \text{Basic angle, } \alpha & = \sin^{-1} (0.15) \\ & = 8.63^\circ \end{align}
\begin{align} x & = 180^\circ + 8.63^\circ, 360^\circ - 8.63^\circ \\ & = 188.63^\circ, 351.37^\circ \\ & \approx 188.6^\circ, 351.4^\circ \end{align}
(e)
\begin{align} 2 \cos x & = \sec x \\ 2 \cos x & = {1 \over \cos x} \\ 2 \cos^2 x & = 1\\ \cos^2 x & = {1 \over 2} \\ \cos x & = \pm \sqrt{1 \over 2} \phantom{00000000} [\text{All 4 quadrants}] \\ \\ \text{Basic angle, } \alpha & = \cos^{-1} \left(\sqrt{1 \over 2}\right) \\ & = 45^\circ \end{align}
\begin{align} x & = 45^\circ, 180^\circ - 45^\circ, 180^\circ + 45^\circ, 360^\circ - 45^\circ \\ & = 45^\circ, 135^\circ, 225^\circ, 315^\circ \end{align}
(f)
\begin{align} 3 \sin x + 2 & = \cot 15^\circ \\ 3 \sin x + 2 & = {1 \over \tan 15^\circ} \\ 3 \sin x + 2 & = 3.7321 \\ 3 \sin x & = 3.7321 - 2 \\ 3 \sin x & = 1.7321 \\ \sin x & = 1.7321 \div 3 \\ \sin x & = 0.57736 \phantom{00000000} [\text{1st or 2nd quadrant}] \\ \\ \text{Basic angle, } \alpha & = \sin^{-1} (0.57736) \\ & = 35.27^\circ \end{align}
\begin{align} x & = 35.27^\circ, 180^\circ - 35.27^\circ \\ & = 35.27^\circ, 144.73^\circ \\ & \approx 35.3^\circ, 144.7^\circ \end{align}
(a)
\begin{align} 2\sin x - \sqrt{3} & = 0 \\ 2\sin x & = \sqrt{3} \\ \sin x & = {\sqrt{3} \over 2} \phantom{000000} \text{[1st or 2nd quadrants}] \\ \\ \text{Basic angle, } \alpha & = \sin^{-1} \left(\sqrt{3} \over 2\right) \phantom{0000} [\text{Radian mode!}] \\ & = {\pi \over 3} \end{align}
\begin{align} x & = {\pi \over 3}, \pi - {\pi \over 3} \\ & = {\pi \over 3}, {2\pi \over 3} \end{align}
(b)
\begin{align} {\cos x - 1 \over 0.5 - \cos x} & = 2 \\ \cos x - 1 & = 2(0.5 - \cos x) \\ \cos x - 1 & = 1 - 2\cos x \\ 3\cos x & = 2 \\ \cos x & = {2 \over 3} \phantom{000000} [\text{1st or 4th quadrant}] \\ \\ \text{Basic angle, } \alpha & = \cos^{-1} \left(2 \over 3\right) \phantom{000} [\text{Radian mode!}] \\ & = 0.84107 \end{align}
\begin{align} x & = 0.84107, 2\pi - 0.84107 \\ & = 0.84107, 5.4421 \\ & \approx 0.841, 5.44 \end{align}
(c)
\begin{align} {4 \over 1 - 2\tan^2 x} & = 7 \\ 4 & = 7(1 - 2\tan^2 x) \\ 4 & = 7 - 14 \tan^2 x \\ 14\tan^2 x & = 7 - 4 \\ 14\tan^2 x & = 3 \\ \tan^2 x & = {3 \over 14} \\ \tan x & = \pm \sqrt{3 \over 14} \phantom{000000000} \text{[All 4 quadrants}] \\ \\ \text{Basic angle, } \alpha & = \tan^{-1} \left(\sqrt{3 \over 14}\right) \phantom{0000} [\text{Radian mode!}] \\ & = 0.43354 \end{align}
\begin{align} x & = 0.43354, \pi - 0.43354, \pi + 0.43354, 2\pi - 0.43354 \\ & = 0.43352, 2.7081, 3.5751, 5.8496 \\ & \approx 0.434, 2.71, 3.58, 5.85 \end{align}
(i)
\begin{align} \text{L.H.S} & = \sin \left(x - {\pi \over 2}\right) \\ & = \sin \left[ - \left( - x + {\pi \over 2}\right) \right] \\ & = \sin \left[ - \left({\pi \over 2} - x \right) \right] \\ & = - \sin \left( {\pi \over 2} - x \right) \phantom{000000} [\sin (-A) = -\sin A] \\ & = - \cos x \\ & = \text{R.H.S} \end{align}
(ii)
\begin{align} \require{cancel} \sqrt{3} \sin \left(x - {\pi \over 2}\right) + 3 & = \sqrt{3} \cos x \\ \\ \text{Since } \sin \left(x - {\pi \over 2}\right) & = - \cos x, \\ \sqrt{3} (-\cos x) + 3 & = \sqrt{3} \cos x \\ -\sqrt{3} \cos x + 3 & = \sqrt{3} \cos x \\ 3 & = 2\sqrt{3} \cos x \\ \\ \cos x & = {3 \over 2\sqrt{3}} \\ \cos x & = {3 \over 2\sqrt{3}} \times {\sqrt{3} \over \sqrt{3}} \\ \cos x & = {\cancel{3}\sqrt{3} \over 2(\cancel{3})} \\ \cos x & = {\sqrt{3} \over 2} \phantom{00000000} [\text{1st or 4th quadrant}] \\ \\ \text{Basic angle, } \alpha & = \cos^{-1} \left(\sqrt{3} \over 2\right) \\ & = {\pi \over 6} \end{align}
\begin{align} x & = {\pi \over 6}, 2\pi - {\pi \over 6} \\ & = {\pi \over 6}, {11\pi \over 6} \end{align}
\begin{align} \tan \theta & = 7 \phantom{000000} [\text{1st or 3rd quadrant}] \\ \\ \text{Since } 0^\circ < & \phantom{.} \theta < 180^\circ, \theta \text{ is in 1st quadrant} \\ \\ \tan \theta & = 7 \\ {Opp \over Adj} & = {7 \over 1} \end{align}
\begin{align} \require{cancel} x & = \sqrt{ (1)^2 + (7)^2 } \\ & = \sqrt{50} \\ & = \sqrt{25} \sqrt{2} \\ & = 5\sqrt{2} \\ \\ \sin \theta & = {Opp \over Hyp} \\ & = {7 \over 5\sqrt{2}} \\ \\ \sin 135^\circ & = \sin (180^\circ - 135^\circ) \\ & = \sin 45^\circ \phantom{000000} [\sin (180^\circ - A) = \sin A] \\ & = {1 \over \sqrt{2}} \\ \\ \therefore v & = {770 \sin 135^\circ \over \sin \theta} \\ & = {770 \left(1 \over \sqrt{2}\right) \over {7 \over 5\sqrt{2}}} \\ & = {770 \over \sqrt{2}} \div {7 \over 5\sqrt{2}} \\ & = {770 \over \cancel{\sqrt{2}}} \times {5\cancel{\sqrt{2}} \over 7} \\ & = {3850 \over 7} \\ & = 550 \end{align}
\begin{align} \tan A & = 2 \phantom{0000000000} [\text{1st or 3rd quadrants}] \\ {Opp \over Adj} & = {2 \over 1} \text{ or } {-2 \over -1} \\ \\ 3 \sin B + 2 & = 0 \\ 3 \sin B & = -2 \\ \sin B & = -{2 \over 3} \phantom{0000000000} [\text{3rd or 4th quadrants}] \\ {Opp \over Hyp} & = {-2 \over 3} \\ \\ \\ \text{Case 1: } & A \text{ in 1st quadrant, } B \text{ in 3rd quadrant} \\ \text{Case 2: } & A \text{ in 1st quadrant, } B \text{ in 4th quadrant} \\ \text{Case 3: } & A \text{ in 3rd quadrant, } B \text{ in 4th quadrant} \\ \end{align}
\begin{align} 3 \sin A - \tan B & = 3 \left(2 \over \sqrt{5}\right) - {-2 \over -\sqrt{5}} \\ & = {6 \over \sqrt{5}} - {2 \over \sqrt{5}} \\ & = {4 \over \sqrt{5}} \end{align}
\begin{align} 3 \sin A - \tan B & = 3 \left(2 \over \sqrt{5}\right) - {-2 \over \sqrt{5}} \\ & = {6 \over \sqrt{5}} + {2 \over \sqrt{5}} \\ & = {8 \over \sqrt{5}} \end{align}
\begin{align} 3 \sin A - \tan B & = 3 \left(-2 \over \sqrt{5}\right) - {-2 \over \sqrt{5}} \\ & = {-6 \over \sqrt{5}} + {2 \over \sqrt{5}} \\ & = -{4 \over \sqrt{5}} \\ \\ \\ \therefore 3 \sin A - \tan B & = {4 \over \sqrt{5}} \text{ or } {8 \over \sqrt{5}} \text{ or } -{4 \over \sqrt{5}} \end{align}
(i)
\begin{align} 180^\circ - 130^\circ & = 50^\circ \\ \\ \sin 50^\circ & = \sin 130^\circ \\ & = k \end{align}
(ii)
\begin{align} \sin 50^\circ & = k \\ {Opp \over Adj} & = {k \over 1} \end{align}
\begin{align} \tan 40^\circ & = {\sqrt{1 - k^2} \over k} \end{align}
(iii)
\begin{align} \sec (-220^\circ) & = {1 \over \cos (-220^\circ)} \\ & = {1 \over \cos 220^\circ} \phantom{000000} [\cos (-A) = \cos A] \\ & = {1 \over \cos (180^\circ + 40^\circ)} \\ & = {1 \over -\cos 40^\circ} \\ & = {1 \over -{k \over 1}} \\ & = -{1 \over k} \end{align}
(i)
\begin{align} {3 + \sqrt{10} \cos x \over \sqrt{10} \sin x + 1} & = 0 \\ \\ 3 + \sqrt{10} \cos x & = 0 \\ \sqrt{10} \cos x & = -3 \\ \cos x & = -{3 \over \sqrt{10}} \phantom{000000} [\text{2nd or 3rd quadrant}] \\ \\ \text{Basic angle, } \alpha & = \cos^{-1} \left(3 \over \sqrt{10}\right) \\ & = 18.43^\circ \end{align}
\begin{align} x & = 180^\circ - 18.43^\circ, 180^\circ + 18.43^\circ \\ & = 161.57^\circ, 198.43^\circ \\ \\ \text{For } & x = 161.57^\circ, \\ \sqrt{10} \sin 161.57^\circ + 1 & = 1.999 \phantom{.} 740 \\ & \approx 2 \\ \\ \text{For } & x = 198.43^\circ, \\ \sqrt{10} \sin 198.43^\circ + 1 & = 0.000 \phantom{.} 259 \\ & \approx 0 \\ \\ \text{Reject } x = 198.43^\circ & \text{ since equation would be undefined} \\ \\ \\ \therefore x & \approx 161.6^\circ \end{align}
(ii)
\begin{align} \text{For } & x = 161.57^\circ, \\ 10 \sin 161.57^\circ + 1 & = 4.161 \phantom{.} 458 \\ \\ \text{For } & x = 198.43^\circ, \\ 10 \sin 198.43^\circ + 1 & = -2.161 \phantom{.} 458 \\ \\ \\ \therefore x & \approx 161.6^\circ, 198.4^\circ \end{align}
(i)(a)
\begin{align} 3 \sin x - 2 & = 0 \\ 3 \sin x & = 2 \\ \sin x & = {2 \over 3} \phantom{000000} [\text{1st or 2nd quadrant}] \\ \\ \text{Basic angle, } \alpha & = \sin^{-1} \left(2 \over 3\right) \\ & = 41.81^\circ \end{align}
\begin{align} x & = 41.81^\circ, 180^\circ - 41.81^\circ \\ & = 41.81^\circ, 138.19^\circ \\ & \approx 41.8^\circ, 138.2^\circ \end{align}
(i)(b)
\begin{align} \tan x - 4 & = 0 \\ \tan x & = 4 \phantom{000000} [\text{1st or 3rd quadrant}] \\ \\ \text{Basic angle, } \alpha & = \tan^{-1} (4) \\ & = 75.96^\circ \end{align}
\begin{align} x & = 75.96^\circ, 180^\circ + 75.96^\circ \\ & = 75.96^\circ, 255.96^\circ \\ & \approx 76.0^\circ, 256.0^\circ \end{align}
(ii)
\begin{align} 3 \sin x \tan x - 12 \sin x - 2 \tan x + 8 & = 0 \\ 3 \sin x (\tan x - 4) - 2(\tan x - 4) & = 0 \\ (\tan x - 4)(3 \sin x - 2) & = 0 \phantom{00000} [\text{Factorise by grouping}] \\ \\ \tan x - 4 = 0 \phantom{0} \text{ or } & \phantom{0} 3 \sin x - 2 = 0 \\ \\ \\ \text{From (i), } x & \approx 41.8^\circ, 76.0^\circ, 138.2^\circ, 256.0^\circ \end{align}