A Maths Textbook Solutions >> Additional Maths 360 Solutions >>
Ex 14.1
Please email me if you spot any mistakes or have any questions.
Solutions
Click to display or to hide
(a)
ddx(3x−7)=3(−7)(x−8)=−21x−8
(b)
ddx(525√x2)=ddx(52x25)=(52)(25)(x25−1)=x−35
(a)
ddx(3x2+4x−1)=3(2)x+4−0=6x+4
(b)
ddx(−4x3+5x2−12)=−4(3)x2+5(2)x−0=−12x2+10x
(c)
ddx(π2x23−2x45)=ddx(π23x2−25x4)=π23(2)x−25(4)x3=2π23x−85x3
(d)
ddx(3x820−πx911)=ddx(320x8−π11x9)=320(8)x7−π11(9)x8=65x7−9π11x8
(e) Note a is a constant.
ddx(3a+bx2)=(0)+b(2)x=2bx
(f) Note a and b are constants.
ddx(a2−b2x3)=(0)−b2(3)x2=−32bx2
(a)
ddx(4x+2x)=ddx[4x+2(x)−1]=4+2(−1)x−2=4−2(1x2)=4−2x2
(b)
ddx(100x2+100x)=ddx(100x2+100x−1)=100(2)x+100(−1)x−2=200x−100(1x2)=200x−100x2
(c)
ddx(9x2−3x2)=ddx(9x2−3x−2)=9(2)x−3(−2)x−3=18x+6(1x3)=18x+6x3
(d)
ddx(6x3−1x+3)=ddx(6x−3−x−1+3)=6(−3)x−4−(−1)x−2+0=−18(1x4)+x−2=−18x4+1x2
(e)
ddx(3x+2√x−3)=ddx(3x+2x12−3)=3+2(12)x−12−0=3+x−12=3+1√x
(f)
ddx(8x2+3x−√x)=ddx(8x2+3x−x12)=8(2)x+3−(12)x−12=16x+3−12(1√x)=16x+3−12√x
(a)
ddx(2x2+4xx)=ddx(2x2x+4xx)=ddx(2x+4)=2(1)+0=2
(b)
ddx(x2−6x+4x)=ddx(x2x−6xx+4x)=ddx(x−6+4x−1)=1−0+4(−1)x−2=1−4(1x2)=1−4x2
(c)
ddx(4x3−5x−32x)=ddx(4x32x−5x2x−32x)=ddx[2x2−52−32(1x)]=ddx(2x2−52−32x−1)=2(2)x−0−32(−1)x−2=4x+32(1x2)=4x+32x2
(d)
ddx(x2+42x2)=ddx(x22x2+42x2)=ddx(12+2x2)=ddx(12+2x−2)=0+2(−2)x−3=−4(1x3)=−4x3
(a)
ddx(3x2+x−1√x)=ddx(3x2x12+xx12−1x12)=ddx(3x32+x12−x−12)000000000000000000[aman=am−n]=3(32)x12+(12)x−12−(−12)x−32=92x12+12x−12+12x−32
(b)
ddx(6x2−√x+22x)=ddx(6x22x−x122x+22x)=ddx(3x−12x−12+1x)0000000000[aman=am−n]=ddx(3x−12x−12+x−1)=3−12(−12)x−32+(−1)x−2=3+14x−32−x−2
(a)
ddt(t+1)(2t−1)=ddt(2t2−t+2t−1)=ddt(2t2+t−1)=2(2)t+1−0=4t+1
(b)
ddt[t(√t−2)]=ddt[t(t12−2]=ddt(t32−2t)000000[am×an=am+n]=32t12−2=32√t−2
(c)
ddt(1+√t)(1−√t)=ddt[(1)2−(√t)2]000000[(a+b)(a−b)=a2−b2]=ddt(1−t)=0−1=−1
(d)
ddt[4t2(3−√t)]=ddt[4t2(3−t12)]=ddt(12t2−4t52)000000[am×an=am+n]=12(2)t−4(52)t32=24t−10t32
(e)
ddt(2t+3)2=ddt[(2t)2+2(2t)(3)+(3)2]000000[(a+b)2=a2+2ab+b2]=ddt(4t2+12t+9)=4(2)t+12+0=8t+12
(f)
ddt[(2t+1)(t−2)t]=ddt2t2−3t−2t=ddt(2t2t−3tt−2t)=ddt(2t−3−2t−1)=2−0−2(−1)t−2=2+2(1t2)=2+2t2
Question 7 - Find the gradient of the tangent to the curve
(a)
dydx=ddx(4x2−6x+1)=4(2)x−6+0=8x−6When x=2,dydx=8(2)−6=10
(b)
y=√x(2−x)=x12(2−x)=2x12−x3200000000[am×an=am+n]dydx=ddx(2x12−x32)=2(12)x−12−32x12=x−12−32x12When x=9,dydx=(9)−12−32(9)12=−256
(c)
y=(x+1)(2x−3)x=2x2−x−3x=2x2x−xx−3x=2x−1−3x−1dydx=ddx(2x−1−3x−1)=2(1)−0−3(−1)x−2=2+3(1x2)=2+3x2When x=−1,dydx=2+3(−1)2=5
Question 8 - Find the gradient of the curve
For parts (a)-(c), the x-coordinates can be found by substituting the provided y-coordinates into the equation of the curve
(a)
dydx=ddx(x2−2x)=(2)x−2=2x−2Substitute y=−1 into eqn of curve,−1=x2−2x0=x2−2x+10=(x−1)2±√0=x−10=x−11=xSubstitute x=1 into dydx,dydx=2(1)−2=0
(b)
dydx=ddx(2x2+3x)=2(2)(x)+3(1)=4x+3Substitute y=2 into eqn of curve,2=2x2+3x0=2x2+3x−20=(2x−1)(x+2) 2x−1=0 or x+2=02x=1x=−2x=12Substitute into dydx,Substitute into dydx,dydx=4(12)+3dydx=4(−2)+3=5=−5
(c)
y=x2+4x=x2x+4x=x+4x−1dydx=ddx(x+4x−1)=1+4(−1)x−2=1−4(1x2)=1−4x2Substitute y=5 into eqn of curve,5=x2+4x5x=x2+40=x2−5x+40=(x−4)(x−1) x−4=0 or x−1=0x=4x=1Substitute into dydx,Substitute into dydx,dydx=1−4(4)2dydx=1−4(1)2=34=−3
(a) The point where the curve crosses the y-axis is the y-intercept, where x = 0
dydx=ddx(2x2−5x+1)=2(2)x−5+0=4x−5When x=0,dydx=4(0)−5=−5
(b) The point where the curve crosses the x-axis is the x-intercept, where y = 0
y=x−4x=xx−4x=1−4x−1dydx=ddx(1−4x−1)=0−4(−1)x−2=4(1x2)=4x2Substitute y=0 into eqn of curve,0=x−4x0=x−44=xSubstitute x=4 into dydx,dydx=4(4)2=14
(c)
y=x+2x=xx+2x=1+2x−1dydx=ddx(1+2x−1)=0+2(−1)x−2=−2(1x2)=−2x2
Next, we need to find the x-coordinates of the point(s) where the line meets the curve and use the x-coordinates to find the gradient y=x000 --- (1)y=x+2x000 --- (2)Substitute (1) into (2),x=x+2xx2=x+2x2−x−2=0(x−2)(x+1)=0 x−2=0 or x+1=0x=2x=−1Substitute into dydx,Substitute into dydx,dydx=−2(2)2dydx=−2(−1)2=−12=−2
(a)
dydx=3(2)(x)+6(1)+0=6x+6Let dydx=3,3=6x+63−6=6x−3=6x−36=x−12=xSubstitute x=−12 into eqn of curve,y=3(−12)2+6(−12)+2=−14∴Coordinates is (−12,−14)
(b)
dydx=ddx(ax2+bx)=ddx(ax2+bx−1)=a(2)x+b(−1)x−2=2ax−bx2When x=1 and dydx=2,2=2a(1)−b(1)22=2a−bb=2a−2000 --- (1)When x=4 and dydx=−1,−1=2a(4)−b(4)2−1=8a−b16−16=128a−bb=128a+16000 --- (2)Substitute (1) into (2),2a−2=128a+16−2−16=128a−2a−18=126a−18126=a−17=aSubstitute a=−17 into (1),b=2(−17)−2=−167∴a=−17,b=−167
The x-coordinates of P and Q can be found by solving simultaneous equations using the equations of the curve and the line.
3x2−8y=−5−8y=−3x2−58y=3x2+5y=38x2+58dydx=38(2)(x)+0=34xEqn of line: 004y−3x=74y=3x+78y=6x+14000 --- (1)Eqn of curve: 003x2−8y=−5000 --- (2)Substitute (1) into (2),3x2−(6x+14)=−53x2−6x−14=−53x2−6x−9=0x2−2x−3=0(x−3)(x+1)=0 x−3=0 or x+1=0x=3x=−1Substitute into dydx,Substitute into dydx,dydx=34(3)dydx=34(−1)=94=−34
y=x(x−2)2−3=x(x2−4x+4)−3=x3−4x2+4x−3dydx=3x2−4(2)x+4=3x2−8x+4When dydx=7,7=3x2−8x+40=3x2−8x−30=(3x+1)(x−3) 3x+1=0 or x−3=03x=−1x=3x=−13Substitute into eqn of curve,Substitute into eqn of curve,y=(−13)(−13−2)2−3y=(3)(3−2)2−3=−42227=0∴.(−13,−42227)∴.(3,0)
The x-axis is a horizontal line with gradient = 0. Since the tangent to the curve is parallel to the x-axis, the gradient of the tangent is 0 as well.
y=9x2+1x=9x2x+1x=9x+x−1dydx=9+(−1)x−2=9−1x2When dydx=0,0=9−1x2−9=−1x29=1x29x2=1x2=19x=±√19=±13 Substitute x=13 into eqn of curve,Substitute x=−13 into eqn of curve,y=9(13)2+113y=9(−13)2+1−13=6=−6∴.(13,6)∴.(−13,−6)
y=π√x2+3√x=π2√x+3√x=π2x12+3x12=π2x12+3x−12dydx=π2(12)x−12+3(−12)x−32=π4x−12−32x−32When x=1,dydx=π4(1)−12−32(1)−32=π4(1)−32(1)=π4−32
(i) To find the values of two unknown constants, we need to form two equations linking the constants.
y=x3+px+qUsing (3,16),16=(3)3+p(3)+q16=27+3p+qq=−3p−1100---(1)dydx=(3)x2+p=3x2+pWhen x=3 and dydx=20,20=3(3)2+p20=27+p20−27=p−7=pSubstitute p=−7 into (1),q=−3(−7)−11=21−11=10∴p=−7,q=10
(ii)
dydx=3x2+pWhen dydx=20 and p=−7,20=3x2−720+7=3x227=3x2273=x29=x2±√9=x±3=x∴x-coordinate of other point is −3Substitute x=−3 into eqn of curve,y=(−3)3+(−7)(−3)+(10)=−27+21+10=4∴.(−3,4)
Question 16 - Find derivative by first principles
I don't think this is necessary for O levels.
f(x)=√xf′(x)=lim
\begin{align} y & = (x^3 + 1)(x^2 + 1)(x + 1) \\ & = (x^5 + x^3 + x^2 + 1)(x + 1) \\ & = x^6 + x^5 + x^4 + x^3 + x^3 + x^2 + x + 1 \\ & = x^6 + x^5 + x^4 + 2x^3 + x^2 + x + 1 \\ \\ {dy \over dx} & = 6x^5 + 5x^4 + 4x^3 + 6x^2 + 2x + 1 \end{align}
Note the powers of 2 (i.e. 2^n) are 2, 4, 8, 16, 32, …, 1024, 2048 and so on…
\begin{align} f(x) & = (x - 1)(x + 1)(x^2 + 1)(x^4 + 1)...(x^{1024} + 1) \\ & = (x^2 - 1)(x^2 + 1)(x^4 + 1)...(x^{1024} + 1) \\ & = (x^4 - 1) (x^4 + 1) ... (x^{1024} + 1) \\ & = (x^{8} - 1) ... (x^{1024} + 1) \\ & \phantom{= }. \\ & \phantom{= }. \\ & \phantom{= }. \\ & = (x^{1024} - 1)(x^{1024} + 1) \\ & = x^{2048} - 1 \\ \\ f'(x) & = 2048x^{2047} \end{align}
(i)
\begin{align} x[x^2 + kx + (2k - 3)] & = 0 \\ \\ x = 0 & \end{align}
(ii)
\begin{align} x^2 + kx + (2k - 3) & = 0 \\ \\ b^2 - 4ac & = (k)^2 - 4(1)(2k - 3) \\ & = k^2 - 4(2k - 3) \\ & = k^2 - 8k + 12 \\ \\ b^2 - 4ac & < 0 \phantom{000000} [\text{No real roots}] \\ k^2 - 8k + 12 & < 0 \\ (k - 2)(k - 6) & < 0 \end{align}

2 < k < 6
(iii)
\begin{align} f(x) & = x[x^2 + kx + (2k - 3)] \\ f(x) & = x^3 + kx^2 + (2k - 3)x \\ \\ f'(x) & = 3x^2 + 2kx + (2k - 3) \\ \\ 0 & = 3x^2 + 2kx + (2k - 3) \\ \\ \alpha + \beta & = -{b \over a} \\ & = -{2k \over 3} \\ & = -{2 \over 3}k \\ \\ \alpha \beta & = {c \over a} \\ & = {2k - 3 \over 3} \\ & = {2k \over 3} - {3 \over 3} \\ & = {2 \over 3}k - 1 \\ \\ (\alpha - \beta)^2 & = \alpha^2 - 2 \alpha \beta + \beta^2 \\ & = (\alpha^2 + \beta^2) - 2\alpha \beta \\ & = (\alpha + \beta)^2 - 2\alpha \beta - 2 \alpha \beta \\ & = (\alpha + \beta)^2 - 4 \alpha \beta \\ & = \left(-{2 \over 3}k\right)^2 - 4 \left({2 \over 3}k - 1\right) \\ & = {4 \over 9}k^2 - {8 \over 3}k + 4 \\ \\ \\ \text{If } & k = 3, \\ (\alpha - \beta)^2 & = {4 \over 9}(3)^2 - {8 \over 3}(3) + 4 \\ & = 0 \\ \implies \alpha = \beta & \text{ and } f'(x) = 0 \text{ has only 1 real root} \\ \\ \\ \therefore \text{If } & f'(x) = 0 \text{ has 2 real roots, } k \ne 3 \end{align}
(iv)
\begin{align} |\alpha - \beta| & \le {2 \over 3} \\ (\alpha - \beta)^2 & \le \left(2 \over 3\right)^2 \\ {4 \over 9}k^2 - {8 \over 3}k + 4 & \le {4 \over 9} \\ 4k^2 - 24k + 36 & \le 4 \\ 4k^2 - 24k + 32 & \le 0 \\ k^2 - 6k + 8 & \le 0 \\ (k - 2)(k - 4) & \le 0 \end{align}

\begin{align} 2 \le & \phantom{.} k \le 4 \\ \\ \text{From (ii), } 2 < & \phantom{.} k < 6 \\ \\ \text{From (iii), } k & \ne 3 \\ \\ \\ \therefore k & = 4 \end{align}
\begin{align} \text{Function 1: } & y = {5 \over 2}x^2 \\ \\ \text{Prove: } & {dy \over dx} = {5 \over 2}(2)x = 5x \\ \\ \\ \text{Function 2: } & y = {5 \over 2}x^2 - 1 \\ \\ \text{Prove: } & {dy \over dx} = {5 \over 2}(2)x - 0 = 5x \end{align}