A Maths Textbook Solutions >> Additional Maths 360 Solutions >>
Ex 2.4
Please email me if you spot any mistakes or have any questions.
Solutions
Click to display or to hide
(a)
\begin{align}
\text{When } & x = 0, \\
y & = 4^{(0)} \\
& = 1 \\
\implies & y\text{-intercept is } 1
\end{align}
(b)
\begin{align}
\text{When } & x = 0, \\
y & = \left( 1 \over 3 \right)^{(0)} \\
& = 1 \\
\implies & y \text{-intercept is } 1
\end{align}
(c)
\begin{align}
\text{When } & x = 0, \\
y & = e^{(0)} \\
& = 1 \\
\implies & y \text{-intercept is } 1
\end{align}
(d)
\begin{align}
\text{When } & x = 0, \\
y & = \pi^{(0)} \\
& = 1 \\
\implies & y \text{-intercept is } 1
\end{align}
(a)
\begin{align}
\text{When } & x = 0, \\
y & = 6(e^0) \\
& = 6(1) \\
& = 6 \\
\implies & y \text{-intercept is } 6
\end{align}
(b)
\begin{align}
\text{When } & x = 0, \\
y & = 2\left(1 \over e\right)^0 \\
& = 2(1) \\
& = 2 \\
\implies & y \text{-intercept is } 2
\end{align}
(c)
\begin{align}
\text{When } & x = 0, \\
y & = 2\left(1 \over 3\right)^0 \\
& = 2(1) \\
& = 2 \\
\implies & y \text{-intercept is } 2
\end{align}
(d)
\begin{align}
\text{When } & x = 0, \\
y & = 3(5.1)^0 \\
& = 3(1) \\
& = 3 \\
\\
\implies & y \text{-intercept is } 3
\end{align}
Question 3 - Real-life problem
(i) The amount of money that James invested into the savings account is the amount he invested at the start
\begin{align} \text{When } & x = 0, \\ y & = 50 \phantom{.} 000(1.04)^{0} \\ & = 50 \phantom{.} 000(1) \\ & = \$50 \phantom{.} 000 \end{align}
(ii)
\begin{align} \text{When } & x = 5, \\ y & = 50 \phantom{.} 000(1.04)^{5} \\ & = 60 \phantom{.} 832.645\phantom{.} 12 \\ & \approx \$60 \phantom{.} 833 \end{align}
Question 4 - Real-life problem
(i)
\begin{align} \text{When } & x = 0, \\ y & = 40(1.4)^0 \\ & = 40(1) \\ & = 40 \end{align}
(ii)
\begin{align} \text{When } & x = 6, \\ y & = 40(1.4)^{6} \\ & = 301.181 \phantom{.} 44 \\ & \approx 301 \end{align}
(iii) Since x in hours, we are looking for the number of bacteria after 24 hours (1 day)
\begin{align} \text{When } & x = 24, \\ y & = 40(1.4)^{24} \\ & = 128 \phantom{.} 567.988 \phantom{.} 017 \\ & \approx 128 \phantom{.} 568 \end{align}
Question 5 - Real-life problem
(i)
\begin{align} \text{When } & x = 0, \\ T & = 90(0.98)^0 \\ & = 90^\circ \text{C} \end{align}
(ii)
\begin{align} \text{When } & x = 10, \\ T & = 90(0.98)^{10} \\ & = 73.536 \\ & \approx 73.5^\circ \text{C} \end{align}
(iii) Since x is in minutes, we are looking for the temperature of the liquid after 60 minutes (1 hour)
\begin{align} \text{When } & x = 60, \\ T & = 90(0.98)^{60} \\ & = 26.779 \\ & \approx 26.8^\circ \text{C} \end{align}
For y = 3(5x), as x increases, y increases
\begin{align}
\text{When } & x = 0, \\
y & = 3(5^0) \\
& = 3(1) \\
& = 3 \\
\implies & y \text{-intercept is } 3
\end{align}
For y = 3(0.2x), as x increases, y decreases
\begin{align}
\text{When } & x = 0, \\
y & = 3(0.2)^0 \\
& = 3(1) \\
& = 3 \\
\implies & y \text{-intercept is } 3
\end{align}
The curves are reflections of each other about the y-axis
The sketch for parts (i) and (ii):
(i)
\begin{align} \text{When } & x = 0, \\ y & = 3(2^0) \\ & = 3(1) \\ & = 3 \\ \implies & y \text{-intercept is } 3 \end{align}
(ii)
\begin{align} y & = 6 - x \\ \\ \text{When } & x = 0, \\ y & = 6 - (0) \\ & = 6 \\ \implies & y \text{-intercept is } 6 \\ \\ \text{When } & y = 0, \\ 0 & = 6 - x \\ x & = 6 \\ \implies & x \text{-intercept is } 6 \end{align}
(iii)
\begin{align} \underbrace{3(2^x)}_{\text{Curve }} & = \underbrace{6 - x}_{\text{Line}} \end{align} $$ \therefore \text{From the graph, only 1 solution} $$
Question 8 - Real-life problem
(i)
\begin{align} \text{When } & t = 0, \\ P & = 600(2 + e^{-0.2(0)}) \\ & = 600(2 + 1) \\ & = 1800 \end{align}
(ii) Since t is in months, we are looking for the number of fishes in the lake after 12 months (1 year)
\begin{align} \text{When } & t = 12, \\ P & = 600(2 + e^{-0.2(12)}) \\ & = 1 \phantom{.} 254.430 \phantom{.} 77 \\ & \approx 1254 \end{align}
(iii)
\begin{align} P & = 600(2 + e^{-0.2t}) \\ & = 600\left( 2 + {1 \over e^{0.2t}} \right) \end{align} \begin{align} \text{As } t \rightarrow \infty &, \phantom{0} {1 \over e^{0.2t}} \rightarrow 0 \\ \\ \therefore P & = 600(2 + 0) \\ & = 1200 \end{align}
Question 9 - Real-life problem
(i) Starting from the end of 2011 to the end of 2015, 4 years has elapsed
\begin{align} \text{When } & x = 4, \\ y & = 45 \phantom{.} 000 (1.02)^4 \\ & = 48 \phantom{.} 709.447 \\ & \approx 48 \phantom{.} 709 \end{align}
(ii) Starting from the end of 2011 to the end of 2021, 10 years has elapsed
\begin{align} \text{When } & x = 10, \\ y & = 45 \phantom{.} 000 (1.02)^{10} \\ & = 54 \phantom{.} 854.748 \phantom{.} 899 \\ & \approx 54 \phantom{.} 854 \phantom{00000} [\text{Rounded down}] \end{align}
(iii)
\begin{align}
\text{When } & x = 0, \\
y & = 45 \phantom{.} 000(1.02)^0 \\
& = 45 \phantom{.} 000(1) \\
& = 45 \phantom{.} 000 \\
\implies & y \text{-intercept is } 45 \phantom{.} 000
\end{align}
(Since x represents the number of years, start from x = 0)
Question 10 - Real-life problem
(i)
\begin{align} \text{When } & t =0, \\ C & = 4.86e^{-0.047(0)} \\ & = 4.86(0) \\ & = 4.86 \text{ μg/ml} \end{align}
(ii)
\begin{align} \text{When } & t = 10, \\ C & = 4.86e^{-0.047(10)} \\ & = 3.037 \phantom{.} 511 \\ & \approx 3.04 \text{ μg/ml} \end{align}
(iii) Since t is in hours, we are looking for the concentration of Fenitoine in the blood after 24 hours (1 day)
\begin{align} \text{When } & t = 10, \\ C & = 4.86e^{-0.047(24)} \\ & = 1.573 \phantom{.} 084 \\ & \approx 1.57 \text{ μg/ml} \end{align}
(iv)
\begin{align} C & = 4.86e^{-0.047t} \\ & = 4.86\left(1 \over e^{0.047t}\right) \end{align} \begin{align} \text{As } t \rightarrow \infty &, \phantom{0} {1 \over e^{0.047t}} \rightarrow 0 \\ \\ \therefore C & = 4.86(0) \\ & = 0 \text{ μg/ml} \end{align}
(v)
\begin{align}
C & = 4.86e^{-0.047t} \\
& = 4.86(e^{-0.047})^t \\
& = 4.86\left(1 \over e^{0.047}\right)^t
\end{align}
\begin{align}
\text{When } & t = 0, \\
C & = 4.86 \text{ (From part i)} \\
\implies & \text{Vertical intercept is } 4.86
\end{align}
(Since t is the number of hours after administering of the drug, t cannot be a negative value. Thus start from t = 0)
\begin{align} y & = 2^{-x} \phantom{000} \text{ --- (1)} \\ y & = 8(2^x) \phantom{000} \text{ --- (2)} \\ \\ \text{Substitute } & \text{(1) into (2),} \\ 2^{-x} & = 8(2^x) \\ 2^{-x} & = (2^3)(2^x) \\ 2^{-x} & = 2^{3 + x} \phantom{00000000} [ (a^m)(a^n) = a^{m + n}] \\ \\ \therefore -x & = 3 + x \\ -2x & = 3 \\ x & = 3 \div - 2 \\ & = -{3 \over 2} \\ \\ \text{Substitute } & x = -{3 \over 2} \text{ into (1),} \\ y & = 2^{-(-{3 \over 2})} \\ & = 2^{3 \over 2} \\ & = (\sqrt{2})^3 \phantom{00000000} [ a^{m \over n} = (\sqrt[n]{a})^m] \\ & = (\sqrt{2})(\sqrt{2})(\sqrt{2}) \\ & = 2\sqrt{2} \\ \\ \therefore \text{Point of } & \text{intersection is } \left(-{3 \over 2}, 2\sqrt{2} \right) \end{align}
For y = 2-x, as x increases, y decreases
\begin{align} \text{When } & x = 0, \\ y & = 2^{-(0)} \\ & = 1 \\ \implies & y \text{-intercept is } 1 \end{align}
For y = 8(2x), as increases, y decreases
\begin{align} \text{When } & x = 0, \\ y & = 8(2^0) \\ & = 8(1) \\ & = 8 \\ \implies & y \text{-intercept is } 8 \end{align}
Question 12 - Real-life problem
(i)
\begin{align} \text{When } & t = 0, \\ m & = 405\left(2 \over 3\right)^0 \\ & = 405(1) \\ & = 405 \text{ g} \end{align}
(ii)
\begin{align} \text{When } & t = 3, \\ m & = 405\left(2 \over 3\right)^3 \\ & = 120 \text{ g} \end{align}
(iii)
\begin{align} \text{Amount of substance decayed in 3 years } & = \text{Initial mass } - \text{Final mass } \\ & = 405 - 120 \\ & = 285 \text{ g} \end{align}
(iv)
\begin{align} \text{When } & m = 80, \\ 80 & = 405\left(2 \over 3\right)^t \\ {80 \over 405} & = \left(2 \over 3\right)^t \\ {16 \over 81} & = \left(2 \over 3\right)^t \\ {2^4 \over 3^4} & = \left(2 \over 3\right)^t \\ \left[ {a^m \over b^m} = \left(a \over b\right)^m \right] \phantom{00000000} \left(2 \over 3\right)^4 & = \left(2 \over 3\right)^t \\ \\ \therefore t & = 4 \\ \\ \therefore \text{No. of years} & = 4 \end{align}
Question 13 - Real-life problem
(i) The initial value of the car is $60,000
\begin{align} V & = Ae^{-kt} \\ \\ \text{When } t = 0 & \text{ and } V = 60 \phantom{.} 000, \\ 60 \phantom{.} 000 & = Ae^{-k(0)} \\ 60 \phantom{.} 000 & = Ae^0 \\ 60 \phantom{.} 000 & = A(1) \\ \\ A & = 60 \phantom{.} 000 \\ \\ \therefore V & = 60 \phantom{.} 000e^{-kt} \\ \\ \text{When } t = 4 & \text{ and } V = 39 \phantom{.} 366, \\ 39 \phantom{.} 366 & = 60 \phantom{.} 000e^{-k(4)} \\ 39 \phantom{.} 366 & = 60 \phantom{.} 000e^{-4k} \\ {39 \phantom{.} 366 \over 60 \phantom{.} 000} & = e^{-4k} \\ {6561 \over 10 \phantom{.} 000} & = e^{-4k} \\ {9^4 \over 10^4} & = (e^{-k})^4 \\ \left[ {a^m \over b^m} = \left(a \over b\right)^m \right] \phantom{00000000} \left(9 \over 10\right)^4 & = (e^{-k})^4 \\ \\ \therefore e^{-k} & = {9 \over 10} \\ & = 0.9 \\ \\ \text{Given that } V & = 60 \phantom{.} 000e^{-kt} \\ & = 60 \phantom{.} 000(e^{-k})^t \\ & = 60 \phantom{.} 000(0.9)^t \text{ (Shown)} \end{align}
(ii) For V = 60 \phantom{.} 000(0.9)t, as t increases, V decreases
\begin{align}
\text{When } & t = 0, \\
V & = 60 \phantom{.} 000(0.9)^0 \\
& = 60 \phantom{.} 000(1) \\
& = 60 \phantom{.} 000 \\
\implies & \text{Vertical intercept is } 60 \phantom{.} 000
\end{align}
(Since time, t, cannot be negative, the graph starts from t = 0)