A Maths Textbook Solutions >> Additional Maths 360 Solutions >>
Ex 8.2
Please email me if you spot any mistakes or have any questions.
Solutions
Click to display or to hide
(i)
$x^2$ | $1$ | $4$ | $9$ | $16$ | $25$ |
$y$ | $6.2$ | $5.6$ | $4.6$ | $3.2$ | $1.4$ |
(ii)
\begin{align} y & = ax^2 + b \\ \\ \therefore Y & = aX + b \\ \\ \text{where } Y & = y \\ X & = x^2 \\ m & = a \\ c & = b \\ \\ \text{Gradient, } a & = {6 - 3 \over 2 - 17} \\ & = -0.2 \\ \\ \text{From } & \text{the graph,} \\ \text{Vertical intercept, } b & = 6.4 \end{align}
(i)
$x$ | $1$ | $2$ | $3$ | $4$ | $5$ |
${1 \over y}$ | $0.40$ | $0.90$ | $1.41$ | $1.89$ | $2.38$ |
(ii)
\begin{align} {1 \over y} & = ax + b \\ \\ \therefore Y & = aX + b \\ \\ \text{where } Y & = {1 \over y} \\ X & = x \\ m & = a \\ c & = b \\ \\ \text{Gradient, } a & = {2 - 1 \over 4.2 - 2.2} \\ & = 0.5 \\ \\ \text{From } & \text{the graph,} \\ \text{Vertical intercept, } b & = -0.1 \end{align}
(i)
$x^2$ | $1$ | $4$ | $9$ | $16$ | $25$ |
$(y - x)$ | $40.5$ | $36.0$ | $28.5$ | $18.0$ | $4.5$ |
(ii)
\begin{align} y & = ax^2 + x - b \\ y - x & = ax^2 - b \\ \\ \therefore Y & = aX - b \\ \\ \text{where } Y & = y - x \\ X & = x^2 \\ m & = a \\ c & = - b \\ \\ \text{Gradient, } a & = {30 - 12 \over 8 - 20} \\ & = -1.5 \\ \\ \text{From } & \text{the graph,} \\ \text{Vertical intercept, } -b & = 42 \\ b & = -42 \end{align}
(i)
${1 \over t}$ | $1$ | $0.5$ | $0.33$ | $0.25$ | $0.2$ |
${1 \over N}$ | $0.752$ | $0.990$ | $1.087$ | $1.124$ | $1.149$ |
(ii)
\begin{align} {a \over N} + {b \over t} & = 4 \\ {a \over N} & = - {b \over t} + 4 \\ {a \over N} & = -b \left(1 \over t\right) + 4 \\ {1 \over N} & = -{b \over a} \left(1 \over t\right) + {4 \over a} \\ \\ \therefore Y & = -{b \over a}X + {4 \over a} \\ \\ \text{where } Y & = {1 \over N} \\ X & = {1 \over t} \\ m & = -{b \over a} \\ c & = {4 \over a} \\ \\ \text{From } & \text{the graph,} \\ \text{Vertical intercept, } {4 \over a} & = 1.25 \\ 4 & = 1.25a \\ {4 \over 1.25} & = a \\ 3.2 & = a \\ \\ \text{Gradient, } -{b \over a} & = {1.05 - 0.85 \over 0.4 - 0.8} \\ -{b \over 3.2} & = -0.5 \\ -b & = 3.2(-0.5) \\ -b & = -1.6 \\ b & = 1.6 \end{align}
(i)
${1 \over x}$ | $5$ | $2.5$ | $1.67$ | $1.25$ | $1$ |
$y$ | $5.25$ | $3.38$ | $2.75$ | $2.44$ | $2.23$ |
(ii)
\begin{align} xy & = h(x + k) \\ xy & = hx + kh \\ y & = {hx \over x} + {kh \over x} \\ y & = h + kh\left(1 \over x\right) \\ y & = kh\left(1 \over x\right) + h \\ \\ \therefore Y & = khX + h \\ \\ \text{where } Y & = y \\ X & = {1 \over x} \\ m & = kh \\ c & = h \\ \\ \text{From } & \text{the graph,} \\ \text{Vertical intercept, } h & = 1.5 \\ \\ \text{Gradient, } kh & = {4.5 - 3 \over 4 - 2} \\ & = 0.75 \\ \\ \text{Since } & h = 1.5, \\ k(1.5) & = 0.75 \\ k & = {0.75 \over 1.5} \\ & = 0.5 \end{align}
(i)
\begin{align} y & = ax + {b \over x} \\ xy & = x\left(ax + {b \over x}\right) \\ xy & = ax^2 + b \\ \\ \therefore Y & = aX + b \\ \\ \text{where } Y & = xy \\ X & = x^2 \\ m & = a \\ c & = b \\ \\ \therefore \text{Plot } xy & \text{ against } x^2 \end{align}
$x^2$ | $0.25$ | $1$ | $2.25$ | $4$ |
$xy$ | $7.3$ | $6.8$ | $6$ | $4.8$ |
(ii)
\begin{align} \text{Gradient, } a & = {6.5 - 5.5 \over 1.5 - 3} \\ & = -0.66666 \\ & \approx -0.67 \\ \\ \\ \text{From } & \text{the graph,} \\ \text{Vertical intercept, } b & = 7.5 \end{align}
(iii) Method 1: Solve using the graph
\begin{align} \text{When } & x = 1.7, \\ x^2 & = (1.7)^2 \\ & = 2.89 \\ & \approx 2.9 \\ \\ \text{From the graph, } & \text{when } x^2 \approx 2.9, \\ xy & = 5.55 \\ \\ \text{Since } & x = 1.7, \\ (1.7)y & = 5.55 \\ y & = {5.55 \over 1.7} \\ y & = 3.2647 \\ y & \approx 3.3 \end{align}
(iii) Method 2: Use equation and values of a and b found in (ii)
\begin{align} y & = -0.66666x + {7.5 \over x} \\ \\ \text{When } & x = 1.7, \\ y & = -0.66666(1.7) + {7.5 \over 1.7} \\ & = 3.2784 \\ & \approx 3.3 \end{align}
(i)
$x$ | $ 1 $ | $ 2 $ | $ 3 $ | $ 4 $ |
${y \over x}$ | $ 1.6 $ | $ 3.6 $ | $ 5.6 $ | $ 7.6 $ |
(ii)
\begin{align} y & = ax^2 + bx \\ {1 \over x}(y) & = {1 \over x}(ax^2 + bx) \\ {y \over x} & = {ax^2 \over x} + {bx \over x} \\ {y \over x} & = ax + b \\ \\ \text{Linear-form: } \phantom{0} Y & = aX + b \\ \\ \text{where } Y & = {y \over x} \\ X & = x \\ m & = a \\ c & = b \\ \\ \\ \text{From } & \text{the graph,} \\ \text{Vertical intercept, } & = -0.4 \\ \\ \text{Gradient, } a & = {8 - 2.6 \over 4.2 - 1.5} \\ & = 2 \end{align}
(iii)
\begin{align}
{y \over x} & = ax + b \\
{y \over x} & = 2x - 0.4
\end{align}
\begin{align}
2x^2 - 0.4x & = 10 \\
{1 \over x} (2x^2 - 0.4x) & = {1 \over x}(10) \\
{2x^2 \over x} - 0.4 & = {10 \over x} \\
2x - 0.4 & = {10 \over x} \\
\\
\therefore \text{Draw } {y \over x} & = {10 \over x}
\end{align}
$x$ | $ 2 $ | $ 2.5 $ | $ 3 $ | $ 3.5 $ | $ 4 $ |
${y \over x} = {10 \over x}$ | $ 5 $ | $ 4 $ | $ 3.33 $ | $ 2.86 $ | $ 2.5 $ |
\begin{align} \text{From } & \text{the graph,} \\ x & \approx 2.3 \end{align}
(i)
$\ln E$ | $ 1.61 $ | $ 2.30 $ | $ 2.89 $ | $ 3.00 $ | $ 3.22 $ | $ 3.40 $ |
$\ln P$ | $ 0.92 $ | $ 2.30 $ | $ 3.48 $ | $ 3.69 $ | $ 4.14 $ | $ 4.50 $ |
(ii)
Since a straight line is obtained, the relationship is true.
(iii)
\begin{align} P & = {E^n \over R} \\ \\ \text{Take } \ln & \text{ of both sides,} \\ \ln P & = \ln \left({E^n \over R}\right) \\ \ln P & = \ln E^n - \ln R \phantom{00000} [\text{Quotient law (Logarithms)}] \\ \ln P & = n(\ln E) - \ln R \phantom{0000} [\text{Power law (Logarithms)}] \\ \text{Linear-form: } Y & = nX - \ln R \\ \\ \text{where } Y & = \ln P \\ X & = \ln E \\ m & = n \\ c & = -\ln R \\ \\ \text{From } & \text{the graph,} \\ \\ c & = -2.305 \\ -\ln R & = -2.305 \\ \ln R & = 2.305 \\ \log_e R & = 2.305 \\ \\ R & = e^{2.305} \phantom{00000000} [\text{Change to index form}] \\ & = 10.0241 \\ & \approx 10.0 \\ \\ \text{Gradient, } n & = {4 - 0 \over 3.15 - 1.15} \\ & = 2 \\ \\ \text{Linear-form: } \ln P & = 2(\ln E) - \ln R \\ \\ \text{Using } (1.15, 0), & \text{ when } \ln E = 1.15 \text{ and } \ln P = 0, \\ 0 & = 2(1.15) - \ln R \\ 0 & = 2.3 - \ln R \\ \ln R & = 2.3 \\ \log_e R & = 2.3 \\ R & = e^{2.3} \\ & = 9.9741 \\ & \approx 10.0 \end{align}
(i)
$\lg \lambda$ | $ 2.40 $ | $ 2.67 $ | $ 2.81 $ | $ 3.08 $ | $ 3.18 $ |
$\lg f$ | $ 3.08 $ | $ 2.81 $ | $ 2.67 $ | $ 2.40 $ | $ 2.30 $ |
(ii)
\begin{align} f & = k\lambda ^n \\ \\ \text{Take } \lg & \text{ of both sides,} \\ \lg f & = \lg (k \lambda^n) \\ \lg f & = \lg k + \lg \lambda^n \phantom{00000} [\text{Product law (logarithms)}] \\ \lg f & = \lg k + n\lg \lambda \phantom{0000/} [\text{Power law (logarithms)}] \\ \lg f & = n(\lg \lambda) + \lg k \\ \\ \text{Linear-form: } Y & = nX + \lg k \\ \\ \text{where } Y & = \lg f \\ X & = \lg \lambda \\ m & = n \\ c & = \lg k \\ \\ \text{From } & \text{the graph,} \\ \text{Vertical intercept, } \lg k & = 5.5 \\ \log_{10} k & = 5.5 \\ k & = 10^{5.5} \phantom{00000000} [\text{Change to index form}] \\ & \approx 316, \phantom{.} 227 \\ \\ \text{Gradient, } n & = {5 - 3.5 \over 0.5 - 2} \\ & = -1 \end{align}
(iii)
\begin{align}
k\lambda^n & = 10^{-2.5n} \\
f & = 10^{-2.5n} \\
\\
\text{Take } \lg & \text{ of both sides,} \\
\lg f & = \lg 10^{-2.5n} \\
\lg f & = (-2.5n) \lg 10 \\
\lg f & = (-2.5n)(1) \\
\lg f & = -2.5n \\
\lg f & = -2.5(-1) \phantom{00000} [\text{From part (ii), } n = -1] \\
\lg f & = 2.5 \\
\\
\text{Since } Y = \lg f, & \text{ draw } Y = \lg f = 2.5
\end{align}
\begin{align}
\text{From } & \text{the graph,} \\
\lg \lambda & = 3 \\
\log_{10} \lambda & = 3 \\
\lambda & = 10^{3} \\
& = 1000
\end{align}
(i)
$ x^2 $ | $ 0.04 $ | $ 0.16 $ | $ 0.36 $ | $ 0.64 $ |
$ xy $ | $ 1.548 $ | $ 1.692 $ | $ 1.932 $ | $ 2.272 $ |
(ii)
\begin{align} y & = Cx + {D \over x} \\ x(y) & = x \left( Cx + {D \over x} \right) \\ xy & = Cx^2 + D \\ \\ \text{Linear-form: } Y & = CX + D \\ \\ \text{where } Y & = xy \\ X & = x^2 \\ m & = C \\ c & = D \\ \\ \text{From } & \text{the graph,} \\ \\ \text{Vertical intercept, } D & = 1.5 \\ \\ \text{Gradient, } C & = {2.22 - 1.62 \over 0.6 - 0.1} \\ & = 1.2 \end{align}
(iii) Note the linear form of the equation is $xy = Cx^2 + D$
\begin{align}
Cx^2 + D & = 2 \\
xy & = 2 \\
\\
\text{Since } Y = xy, & \text{ draw } Y = xy = 2
\end{align}
\begin{align}
\text{From } & \text{the graph,} \\
X & = 0.41 \\
x^2 & = 0.41 \\
x & = \sqrt{0.41} \\
& = 0.64031 \\
& \approx 0.6
\end{align}
(i)
\begin{align} y - x & = kx^n \\ \\ \text{Take } \lg & \text{ of both sides,} \\ \lg (y - x) & = \lg (kx^n) \\ \lg (y - x) & = \lg k + \lg x^n \phantom{00000} [\text{Product law (logarithms)}] \\ \lg (y - x) & = \lg k + n\lg x \phantom{0000/} [\text{Power law (logarithms)}] \\ \lg (y - x) & = n(\lg x) + \lg k \\ \\ \text{Linear-form: } Y & = nX + \lg k \\ \\ \text{where } Y & = \lg (y - x) \\ X & = \lg x \\ m & = n \\ c & = \lg k \\ \\ \therefore \text{Plot } \lg (y - x) & \text{ against } \lg x \end{align}
$ \lg x $ | $ 0.301 $ | $ 0.477 $ | $ 0.602 $ | $ 0.699 $ | $ 0.778 $ |
$ \lg (y - x) $ | $ 0.996 $ | $ 1.260 $ | $ 1.447 $ | $ 1.592 $ | $ 1.711 $ |
(ii)
\begin{align} \text{From } & \text{the graph,} \\ \text{Vertical intercept, } \lg k & = 0.54 \\ \log_{10} k & = 0.54 \\ k & = 10^{0.54} \phantom{000000} [\text{Change to index form}] \\ & = 3.46736 \\ & \approx 3.5 \\ \\ \text{Gradient, } n & = {1.68 - 1.14 \over 0.76 - 0.4} \\ & = 1.5 \end{align}
(iii)
\begin{align}
y & = x + 4.5 \\
y - x & = 4.5 \\
\lg (y - x) & = \lg 4.5 \\
\\
\text{Since } Y = \lg (y - x), & \text{ draw } Y = \lg (y - x) = \lg 4.5
\end{align}
\begin{align}
\text{From } & \text{the graph,} \\
\lg x & = 0.07 \\
\log_{10} x & = 0.07 \\
x & = 10^{0.07} \\
& = 1.1748 \\
& \approx 1.17
\end{align}
(i)
\begin{align} y & = Ae^{-bx} \\ \\ \text{Take } \ln & \text{ of both sides,} \\ \ln y & = \ln (Ae^{-bx}) \\ \ln y & = \ln A + \ln e^{-bx} \phantom{00000} [\text{Product law (logarithms)}] \\ \ln y & = \ln A + (-bx)(\ln e) \phantom{0/} [\text{Power law (logarithms)}] \\ \ln y & = \ln A + (-bx)(1) \\ \ln y & = \ln A - bx \\ \ln y & = -bx + \ln A \\ \\ \text{Linear-form: } Y & = -bX + \ln A \\ \\ \text{where } Y & = \ln y \\ X & = x \\ m & = -b \\ c & = \ln A \\ \\ \therefore \text{Plot } \ln y & \text{ against } x \end{align}
$ x $ | $ 1 $ | $ 2 $ | $ 3 $ | $ 4 $ | $ 5 $ | $ 6 $ |
$ \ln y $ | $ 2.588 $ | $ 2.293 $ | $ 1.988 $ | $ 1.686 $ | $ 1.386 $ | $ 1.099 $ |
(ii)
\begin{align} \text{From } & \text{the graph,} \\ \text{Vertical intercept, } \ln A & = 2.9 \\ \log_e A & = 2.9 \\ A & = e^{2.9} \phantom{00000000} [\text{Change to index form}] \\ & = 18.174 \\ & \approx 18 \\ \\ \text{Gradient, } -b & = {2.75 - 1.55 \over 0.5 - 4.5} \\ - b & = -0.3 \\ b & = 0.3 \end{align}
(iii)
\begin{align} \text{When } & y = 6, \\ \ln y & = \ln 6 \\ & = 1.791759 \\ & \approx 1.8 \\ \\ \text{From the graph, } & \text{when } \ln y = 1.8, \\ x & \approx 3.65 \end{align}
(i)
\begin{align} y & = a + {b \over x} \\ x(y) & = x\left(a + {b \over x}\right) \\ xy & = ax + b \\ \\ \text{Linear-form: } Y & = aX + b \\ \\ Y & = xy \\ X & = x \\ m & = a \\ c & = b \\ \\ \therefore \text{Plot } xy & \text{ against } x \end{align}
$ x $ | $ 0.4 $ | $ 1.7 $ | $ 2.0 $ | $ 2.5 $ | $ 3.2 $ | $ 4.0 $ | $ 5.0 $ |
$ xy $ | $ -0.2 $ | $ 1.36 $ | $ 3 $ | $ 4 $ | $ 5.44 $ | $ 7 $ | $ 9 $ |
(ii)(a)
\begin{align} \text{Abnormal reading, } y & = 0.8 \\ \\ \text{From the graph } & \text{and when } x = 1.7, \\ xy & = 2.4 \\ (1.7)(y) & = 2.4 \\ 1.7y & = 2.4 \\ y & = {2.4 \over 1.7} \\ & = 1.4117 \\ & \approx 1.4 \end{align}
(ii)(b)
\begin{align} \text{From } & \text{the graph,} \\ \text{Vertical intercept, } b & = -1 \\ \\ \text{Gradient, } a & = {8 - 1 \over 4.5 - 1} \\ a & = 2 \end{align}
(i)
\begin{align} T & = kx^n \\ \\ \text{Take } \lg & \text{ of both sides,} \\ \lg T & = \lg (kx^n) \\ \lg T & = \lg k + \lg x^n \phantom{00000} [\text{Product law (logarithms)}] \\ \lg T & = \lg k + n\lg x \phantom{00000} [\text{Power law (logarithms)}] \\ \lg T & = n(\lg x) + \lg k \\ \\ \text{Linear-form: } Y & = nX + \lg k \\ \\ \text{where } Y & = \lg T \\ X & = \lg x \\ m & = n \\ c & = \lg k \\ \\ \therefore \text{Plot } \lg T & \text{ against } \lg x \end{align}
$ \lg x $ | $ 1.76 $ | $ 2.03 $ | $ 2.36 $ | $ 2.89 $ | $ 3.15 $ |
$ \lg T $ | $ -0.62 $ | $ -0.21 $ | $ 0.27 $ | $ 1.07 $ | $ 1.47 $ |
(ii)
\begin{align} \text{From } & \text{the graph,} \\ \text{Gradient, } n & = {1.25 - 0.5 \over 3 - 2.5} \\ & = 1.5 \\ \\ \text{Linear form: } \lg T & = 1.5 (\lg x) + \lg k \\ \\ \text{Using } (2.5, 0.5), & \text{ when } \lg x = 2.5 \text{ and } \lg T = 0.5, \\ 0.5 & = 1.5(2.5) + \lg k \\ -\lg k & = 3.75 - 0.5 \\ -\lg k & = 3.25 \\ \lg k & = -3.25 \\ \log_{10} k & = -3.25 \\ k & = 10^{-3.25} \phantom{00000000} [\text{Change to index form}] \\ & = 5.6234 \times 10^{-4} \\ & \approx 5.6 \times 10^{-4} \end{align}
(iii) Method 1: Using equation of graph & values of k and n from (ii)
\begin{align} \text{Since } & k = 5.6234 \times 10^{-4} \text{ and } n = 1.5, \\ \\ T & = (5.6234 \times 10^{-4})x^{1.5} \\ \\ \text{When } & x = 149.6, \\ T & = (5.6234 \times 10^{-4})(149.6)^{1.5} \\ & = 1.0289 \\ & \approx 1 \text{ Earth years} \end{align}
(iii) Method 2: Using graph
\begin{align} \text{When } & x = 149.6, \\ \lg x & = \lg 149.6 \\ & \approx 2.17 \\ \\ \text{From the graph, } & \text{when } \lg x = 2.17, \\ \lg T & = 0 \\ \log_{10} T & = 0 \\ T & = 10^0 \phantom{00000} [\text{Change to index form}] \\ & = 1 \text{ Earth years} \end{align}
(i)
(ii)
\begin{align} & \text{From (i), shape resembles graph of } y = \ln x \\ \\ & \therefore \text{Plot } P \text{ against } \ln t \end{align}
$\ln t$ | $0$ | $0.693$ | $1.609$ | $2.302$ | $2.708$ | $2.995$ | $3.401$ |
$ P $ | $30$ | $42$ | $50$ | $65$ | $73$ | $77$ | $85$ |
\begin{align} m & = {61 - 30 \over 2 - 0} \\ & = 15.5 \\ \\ c & = 30 \\ \\ Y & = mX + c \\ Y & = 15.5X + 30 \\ \\ \text{Since } & Y = P \text{ and } X = \ln t, \\ P & = 15.5 \ln t + 30 \end{align}
(iii)
\begin{align} P & = 15.5 \ln t + 30 \\ \\ \text{When } & P = 95, \\ 95 & = 15.5 \ln t + 30 \\ 65 & = 15.5 \ln t \\ {65 \over 15.5} & = \ln t \\ {65 \over 15.5} & = \log_e t \\ \\ t & = e^{65 \over 15.5} \\ t & = 66.257 \\ t & \approx 66.3 \text{ s} \end{align}
(i)
\begin{align} \text{Quadratic equation, since the points resemble the shape of a quadratic graph } (\cup) \end{align}
(ii)
\begin{align} y & = ax^2 + bx \\ y & = x(ax + b) \\ {y \over x} & = ax + b \\ \\ \text{Plot } & {y \over x} \text{ against } x \end{align}
$x$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ |
$ {y \over x} $ | $9$ | $11$ | $13$ | $15$ | $17$ | $19$ |
\begin{align} {y \over x} & = ax + b \\ \\ \text{Vertical intercept, } b & = 5 \\ \\ \text{Gradient, } a & = {18 - 5 \over 6.5 - 0} \\ & = 2 \\ \\ \\ y & = 2x^2 + 5x \end{align}
(iii)
\begin{align} y & = 2x^2 + 5x \\ \\ \text{When } & x = 4.5, \\ y & = 2(4.5)^2 + 5(4.5) \\ y & = 63 \end{align}
(iv)
\begin{align} & \text{No, since }x = 1 \text{ lies outside the experimental values of } x, 2 \le x \le 7 \\ \\ & \text{Thus, equation may not apply for } x = 1 \end{align}
\begin{align} \text{(b), since the points resemble the shape of a quadratic graph } (\cap) \text{ with a maximum turning point} \end{align}