A Maths Textbook Solutions >> Additional Maths 360 Solutions >>
Revision Ex 10
Please email me if you spot any mistakes or have any questions.
Note question B8 involves the tangent secant theorem, which is out of the latest syllabus.
Solutions
Click to display or to hide
(i)
\begin{align} AH & = GB \phantom{000} \text{ (Given)} \\ AG + GH & = BA + AG \\ GH & = BA + AG - AG \\ & = BA \\ \\ GH & = AB \phantom{000} \text{ [S]} \\ \\ \angle GHI & = \angle ABC \phantom{000} \text{ (Alternate }\angle s) \text{ [A]} \\ \\ HI & = BC \phantom{000} \text{ (Given) [S]} \\ \\ \\ \therefore \triangle GHI & \text{ is congruent to } \triangle ABC \text{ (SAS)} \end{align}
(ii)
\begin{align} \text{Let } & \angle BAC = x^\circ \\ \\ \angle HGI & = \angle BAC \phantom{000} (\triangle GHI \equiv \triangle ABC) \\ & = x^\circ \\ \\ \angle GAC & = 180^\circ - \angle BAC \phantom{000} (\text{Adjacent } \angle s \text{ on a straight line)} \\ & = 180^\circ - x^\circ \\ & = 180^\circ - \angle HGI \\ & = \angle AGI \\ \\ \angle GAC & = \angle AGI \\ \\ \therefore CA \phantom{.} & // \phantom{.} GI \phantom{000} (\text{Converse of alternate } \angle s) \end{align}
(i)
\begin{align} \angle APQ & = \angle ABC \phantom{000} \text{ (Given) [A]} \\ \\ \angle PAQ & = \angle BAC \phantom{000} \text{ (Common }\angle) \text{ [A]} \\ \\ \\ \therefore \triangle APQ & \text{ is similar to } \triangle ABC \text{ (AA Similarity)} \end{align}
(ii)
\begin{align} \text{Since } \triangle APQ & \text{ is similar to } \triangle ABC, \\ {AP \over AB} & = {AQ \over AC} \\ {(AP)(AC) \over AB} & = AQ \\ {\left({1 \over 2}AC\right)(AC) \over AB} & = AQ \phantom{000000} [P \text{ is the mid-point of } AC] \\ {{1 \over 2}AC^2 \over AB} & = AQ \\ \\ AQ & = {{1 \over 2}AC^2 \over AB} \\ AQ & = {{1 \over 2}AC^2 \over AB} \times {2 \over 2} \\ AQ & = {AC^2 \over 2AB} \phantom{0} \text{ (Shown)} \end{align}
(i)
\begin{align} \angle AEF & = \angle DEG \phantom{000} \text{ (Vertically opposite } \angle s) \text{ [A]} \\ \\ \angle EAF & = \angle EDG \phantom{000} \text{ (Alternate } \angle s) \text{ [A]} \\ \\ \\ \therefore \triangle AEF & \text{ is similar to } \triangle DEG \text{ (AA Similarity)} \end{align}
(ii)
\begin{align}
\text{Since } \triangle AEF & \text{ is similar to } \triangle DEG, \\
{AE \over DE} & = {AF \over DG} \\
{AE \over 2AE} & = {AF \over DG} \phantom{00000} \left[ \text{Since } AE = {1 \over 3}AD, \phantom{.} DE = 2AE\right] \\
{1 \over 2} & = {AF \over DG} \\ \\
DG & = 2AF
\end{align}
\begin{align}
\angle BCF & = \angle DCG \phantom{000} (\text{Common } \angle) \text{ [A]} \\
\\
\angle BFC & = \angle DGC \phantom{000} (\text{Corresponding } \angle s, \phantom{.} BF \phantom{.} // \phantom{.} DG) \text{ [A]} \\
\\
\\
\triangle BCF & \text{ is similar to } \triangle DCG \text{ (AA Similarity)} \\
\\
\\
\text{Since } \triangle BCF & \text{ is similar to } \triangle DCG, \\
{BF \over DG} & = {BC \over DC} \\
{BF \over DG} & = {2DC \over DC} \phantom{000} (D \text{ is the mid-point of } BC) \\
{BF \over DG} & = 2 \\
BF & = 2DG \\
BF & = 2(2AF) \phantom{00000} [DG = 2AF] \\
& = 4AF \phantom{0} \text{ (Shown)}
\end{align}
(iii)
\begin{align} BF & = 4AF \phantom{000} (\text{From part ii}) \\ & = 4(1) \\ & = 4 \text{ cm} \\ \\ AB & = AF + BF \\ & = 1 + 4 \\ & = 5 \text{ cm} \end{align}
(i)
\begin{align} PD & = QB \phantom{000} \text{ (Given) [S]} \\ \\ \angle PDC & = \angle QBA \phantom{000} \text{(Opposite angles of parallelogram are equal) [A]} \\ \\ DC & = BA \phantom{000} \text{(Opposite sides of parallelogram are equal) [S]} \\ \\ \\ \triangle PDC & \text{ is congruent to } \triangle QBA \text{ (SAS)} \end{align} $$ \therefore \angle DPC = \angle BQA \phantom{00} (\triangle PDC \equiv \triangle QBA) $$
(ii)
\begin{align} \angle CPA & = 180^\circ - \angle DPC \phantom{000} (\text{Adjacent } \angle s \text{ on a straight line)} \\ & = 180^\circ - \angle BQA \phantom{000} (\text{From part i}) \\ & = \angle AQC \\ \\ \text{Let } & \angle DAB = x^\circ \\ \\ \angle DCB & = \angle DAB \phantom{000} \text{(Opposite angles of parallelogram are equal)} \\ & = x^\circ \\ \\ \angle PCD & = \angle QAB \phantom{000} (\triangle PDC \equiv \triangle QBA) \\ \\ \angle PCQ & = \angle DCB - \angle PCD \\ & = x^\circ - \angle PCD \\ & = x^\circ - \angle QAB \\ & = \angle DAB - \angle QAB \\ & = \angle PAQ \\ \\ \therefore \angle PCQ & = \angle PAQ \end{align} \begin{align} \text{Since } \angle CPA = \angle AQC \text{ and } \angle PCQ = \angle PAQ, \phantom{.} AQCP \text{ is a parallelogram} \end{align}
(i)
\begin{align}
\text{If } \angle SRY & = \angle RYP = 90^\circ,
\phantom{.} RX = XY \\
\\
\therefore XU \phantom{.} & // \phantom{.} YQ
\phantom{.} (\text{Midpoint theorem}) \\
\\
\implies TU \phantom{.} & // \phantom{.} PQ \phantom{.} // \phantom{.} SR \\
\\ \\
\text{Since } RU = UQ \text{ and } VU \phantom{.} & // \phantom{.} PQ, \text{ by the converse of }
\text{midpoint theorem,} \\
RV & = VP
\end{align}
\begin{align}
TU & = TV + VU \\
& = \left({1 \over 2}SR\right) + VU \phantom{000} \text{(Mid-point theorem)} \\
& = {1 \over 2}SR + VU \\
& = {1 \over 2}(PY) + VU \\
& = {1 \over 2}\left({1 \over 2}PQ\right) + VU \phantom{000} (PY = YQ) \\
& = {1 \over 4}PQ + VU \\
& = {1 \over 4}PQ + {1 \over 2}PQ \phantom{000} \text{(Mid-point theorem)} \\
& = {3 \over 4}PQ \phantom{0} \text{ (Shown)}
\end{align}
(ii)
\begin{align} \text{When } & TU = 8, \\ 8 & = {3 \over 4}PQ \\ \\ PQ & = {8 \over {3 \over 4}} \\ & = {32 \over 3} \text{ units} \end{align}
(i)
\begin{align}
\angle ADB & = 90^\circ \phantom{000} (\text{Right } \angle \text{ in semicircle)} \\
\\
\angle ADC & = 180^\circ - \angle ADB \phantom{000} (\text{Adjacent } \angle s \text{ on a straight line)} \\
& = 180^\circ - 90^\circ \\
& = 90^\circ \\
& = \angle ADB \\
\\
\angle ADC & = \angle ADB \phantom{000} \text{ [R]} \\
\\
AC & = AB \phantom{00} \text{ (Given) [H]} \\
\\
AD & \text{ is the common side [S]} \\
\\ \\
\therefore \triangle ADC & \text{ is congruent to } \triangle ADB \text{ (RHS)}
\end{align}
\begin{align}
DC & = DB \phantom{000} (\triangle ADC \equiv \triangle ADB) \\
\\
\therefore D & \text{ is the mid-point of } CB \\
\\
\\
\text{Since } D \text{ is the} & \text{ mid-point of }CB \text{ and } G \text{ is the mid-point of } EB, \\
CE \phantom{.} & // \phantom{.} DG \phantom{000} (\text{Mid-point theorem})
\end{align}
(ii)
\begin{align}
\angle FAE & = \angle DAG \phantom{000} \text{ (Common }\angle ) \text{ [A]} \\
\\
\angle AEF & = \angle AGD \phantom{000} \text{ (Corresponding } \angle s) \text{ [A]} \\
\\
\therefore \triangle AEF & \text{ is similar to } \triangle AGD \text{ (AA Similarity)}
\end{align}
\begin{align}
\text{Since } \triangle AEF & \text{ is similar to } \triangle AGD, \\
{AF \over AD} & = {AE \over AG} \\
{AF \over AD} & = {AE \over 2AE} \phantom{000} (\text{Since } AE = EG, \phantom{.} AG = 2AE) \\
{AF \over AD} & = {1 \over 2} \\
AF & = {1 \over 2}AD \phantom{00} \text{ (Shown)}
\end{align}
(i)
\begin{align} \angle DPF & = \angle OPC \phantom{000} \text{ (Common } \angle ) \text{ [A]} \\ \\ \text{Let } & \angle COA = x^\circ \\ \\ \angle POC & = 180^\circ - \angle COA \phantom{000} (\text{Adjacent } \angle s \text{ on a straight line)} \\ & = 180 - x \\ & = (180 - x)^\circ \\ \\ \angle COE & = \angle COA + \angle AOE \\ & = \angle COA + \angle COA \phantom{000} (\angle COA = \angle AOE, \text{ since arc } AC = \text{ arc } AE) \\ & = x + x \\ & = (2x)^\circ \\ \\ \angle CDF & = {1 \over 2}\angle COE \phantom{000} (\angle \text{ at centre } = 2 \angle \text{ at circumference)} \\ & = {1 \over 2} (2x) \\ & = x^\circ \\ \\ \angle PDF & = 180^\circ - \angle CDF \phantom{000} (\text{Adjacent } \angle s \text{ on a straight line)} \\ & = 180 - x \\ & = (180 - x)^\circ \\ & = \angle POC \\ \\ \angle PDF & = \angle POC \phantom{000} \text{ [A]} \\ \\ \\ \therefore \triangle PDF & \text{ is similar to } \triangle POC \text{ (AA Similarity)} \end{align}
(ii)
\begin{align} \text{Since } \triangle PDF & \text{ is similar to } \triangle POC, \\ {PD \over PO} & = {PF \over PC} \\ (PD)(PC) & = (PF)(PO) \\ PD \times PC & = PF \times PO \phantom{00} \text{ (Shown)} \end{align}
(iii)
\begin{align}
\text{Let } & \angle OAC = y^\circ \\
\\
\angle CDB & = 180^\circ - \angle OAC \phantom{000} (\angle s \text{ in opposite segment)} \\
& = 180 - y \\
& = (180 - y)^\circ \\
\\
\angle PDB & = 180^\circ - \angle CDB \phantom{000} (\text{Adjacent } \angle s \text{ on a straight line)} \\
& = 180 - (180 - y) \\
& = 180 - 180 + y \\
& = y^\circ \\
& = \angle OAC \\
& = \angle PAC \phantom{000} (\text{Common } \angle) \\
\\
\angle PDB & = \angle PAC \phantom{000} \text{ [A]} \\
\\
\angle DPB & = \angle APC \phantom{000} \text{ (Common } \angle ) \text{ [A]} \\
\\
\\
\therefore \triangle PDB & \text{ is similar to } \triangle PAC \text{ (AA Similarity)}
\end{align}
\begin{align}
\text{Since } \triangle PDB & \text{ is similar to } \triangle PAC, \\
{PD \over PA} & = {PB \over PC} \\
(PD)(PC) & = (PB)(PA) \\
PD \times PC & = PB \times PA \\
\\
\text{From part (i), } & PD \times PC = PF \times PO. \\
\\
\therefore PF \times PO & = PB \times PA \text{ (Shown)}
\end{align}
(i)
\begin{align} \angle QDC & = 90^\circ \phantom{000} \text{(Tangent } \perp \text{ radius)} \\ \\ \angle ADF & = \angle ADQ + \angle QDC + \angle CDF \\ & = \angle ADQ + 90^\circ + \angle CFD \phantom{000} \text{ (Isosceles } \triangle CDF, \angle CDF = \angle CFD) \\ & = \angle ADQ + 90^\circ + \angle OFA \phantom{000} (\text{Common } \angle) \\ & = \angle ADQ + 90^\circ + \angle OAF \phantom{000} \text{ (Isosceles } \triangle OAF, \angle OFA = \angle OAF) \\ & = \angle ADQ + 90^\circ + \angle QAD \phantom{000} (\text{Common } \angle) \\ & = \angle ADQ + 90^\circ + (180^\circ - 90^\circ - \angle ADQ) \phantom{000} (\angle \text{ sum of } \triangle) \\ & = \angle ADQ + 90^\circ + 90^\circ - \angle ADQ \\ & = 180^\circ \\ \\ \therefore A, D & \text{ and } F \text{ lie on the same straight line} \end{align}
(ii)
\begin{align}
\angle AFB & = 90^\circ \phantom{000} (\text{Right } \angle \text{ in semicircle}) \\
& = \angle AQD \phantom{00} \text{ [A]} \\
\\
\angle BAF & = \angle DAQ \phantom{000} \text{ (Common } \angle ) \text{ [A]} \\
\\
\therefore \triangle BAF & \text{ is similar to } \triangle DAQ \text{ (AA Similarity)}
\end{align}
\begin{align}
\text{Since } \triangle BAF & \text{ is similar to } \triangle DAQ, \\
{BA \over DA} & = {AF \over AQ} \\
(BA)(AQ) & = (DA)(AF) \\
(AB)(AQ) & = (AD)(AF) \\
AB \times AQ & = AD \times AF \\
\\
\therefore AD \times AF & = AQ \times AB \phantom{00} \text{ (Shown)}
\end{align}
(i)
\begin{align} \angle ABF & = \angle ABD - \angle FBD \\ & = \angle EDB - \angle FBD \phantom{00} (\angle ABD = \angle EDB) \\ & = \angle EDB - \angle FDB \phantom{00} (\angle FBD = \angle FDB) \\ & = \angle EDF \\ \\ \therefore \angle ABF & = \angle EDF \phantom{0} \text{ (Shown)} \end{align}
(ii)
\begin{align} \angle BAF & = \angle DEF \phantom{000} \text{ (Isosceles } \triangle CAE) \text{ [A]} \\ \\ \angle ABF & = \angle EDF \phantom{000} \text{ [A]} \\ \\ BF & = DF \phantom{000} \text{ (Isosceles } \triangle FBD) \text{ [S]} \\ \\ \\ \therefore \triangle ABF & \text{ is congruent to } \triangle EDF \text{ (AAS)} \end{align}
(iii)
\begin{align} AF & = EF \phantom{00} (\triangle ABF \text{ is congruent to } \triangle EDF) \\ \\ \text{Since } & AE = AF + FE, F \text{ is the mid-point of } AE \end{align}
(i)
\begin{align} \angle DYC & = \angle YXB \phantom{000} \text{(Corresponding }\angle s) \text{ [A]} \\ \\ \angle YDC & = \angle AYD \phantom{000} \text{(Alternate }\angle s) \\ & = \angle XYB \phantom{000} \text{(Vertically opposite } \angle s) \text{ [A]} \\ \\ \\ \therefore \triangle YDC & \text{ is similar to } \triangle XYB \text{ (AA Similarity)} \end{align}
(ii)
\begin{align} \text{Since } \triangle YDC & \text{ is similar to } \triangle XYB, \\ {YC \over XB} & = {DC \over YB} \\ {YC \over XB} & = {DC \over {1 \over 2}DC} \phantom{00} (AY = YB) \\ {YC \over XB} & = {1 \over {1 \over 2}} \\ {YC \over XB} & = 2 \\ YC & = 2XB \phantom{0} \text{(Shown)} \end{align}
(i)
\begin{align} \angle AGE & = 180^\circ - \angle CDG \phantom{00} \text{(Interior }\angle s, \phantom{.} CD \phantom{.} // \phantom{.} EG) \\ & = 180^\circ - 90^\circ \\ & = 90^\circ \\ & = \angle ACE \\ \\ \angle AGE & = \angle ACE \phantom{000} \text{ [A]} \\ \\ \angle GAE & = \angle CAE \phantom{000} (AE \text{ bisects } \angle BAC) \text{ [A]} \\ \\ AE & \text{ is the common side [S]} \\ \\ \\ \triangle AGE & \text{ is congruent to } \triangle ACE \text{ (AAS)} \end{align} $$ \therefore GE = CE \phantom{000} (\triangle AGE \equiv \triangle ACE) $$
(ii)
\begin{align} \angle CFE & = \angle FEG \phantom{000} \text{ (Alternate } \angle s) \\ & = \angle AEG \phantom{000} \text{ (Common } \angle ) \\ & = \angle AEC \phantom{000} (\triangle AGE \text{ congruent to } \triangle ACE) \\ & = \angle CEF \phantom{000} \text{ (Common } \angle ) \\ \\ \therefore \triangle CFE & \text{ is an isosceles triangle}. \\ \\ \therefore CF & = CE \phantom{00} \text{ (Isosceles } \triangle CEF) \end{align}
(i)
\begin{align}
\text{Since } S \text{ is the } & \text{mid-point of } PQ \text{ and } M \text{ is the mid-point of } PT, \\
\\
SM \phantom{.} & // \phantom{.} QT \phantom{000} (\text{Mid-point theorem})
\end{align}
\begin{align}
\angle URT & = \angle SRM \phantom{00} \text{(Common } \angle ) \text{ [A]} \\
\\
\angle UTR & = \angle SMR \phantom{00} \text{(Corresponding } \angle s, SM \phantom{0} // \phantom{0} UT) \text{ [A]} \\
\\
\\
\triangle URT & \text{ is similar to } \triangle SRM \text{ (AA Similarity)}
\end{align}
\begin{align}
PT & = 2TR \phantom{000} \text{ (Given)} \\
PM + MT & = 2TR \\
PM + PM & = 2TR \phantom{000} (PM = MT) \\
2PM & = 2TR \\
PM & = TR = MT
\end{align}
\begin{align}
\text{Since } \triangle URT & \text{ is similar to } \triangle SRM, \\
{SM \over UT} & = {MR \over TR} \\
{SM \over UT} & = {2TR \over TR} \phantom{000} (MT = TR) \\
{SM \over UT} & = 2 \\
SM & = 2UT \\
\\
\therefore SM & = 2TU \phantom{0} \text{(Shown)}
\end{align}
(ii)
\begin{align} SM & = {1 \over 2}QT \phantom{000} \text{(Mid-point theorem)} \\ 2TU & = {1 \over 2}QT \phantom{000} (SM = 2TU \text{ from part i}) \\∂ 4TU & = QT \phantom{0} \text{(Shown)} \end{align}
(iii)
\begin{align} \require{cancel} {\text{Area of }\triangle UTR \over \text{Area of }\triangle TQR} & = {\cancel{1 \over 2} \times TU \times \cancel{\text{Height}} \over \cancel{{1 \over 2}} \times QT \times \cancel{\text{Height}}} \\ & = {TU \over QT} \\ & = {\cancel{TU} \over 4\cancel{TU}} \phantom{000} (4TU = QT \text{ from part ii}) \\ & = {1 \over 4} \\ \\ {\text{Area of }\triangle UTR \over \text{Area of }\triangle TQR} & = {1 \over 4} \\ \\ 4 \times \text{Area of }\triangle UTR & = \text{Area of }TQR \\ \\ \\ \text{Since area of } & \triangle UTR = x, \\ \\ \text{Area of }TQR & = 4 \times x \\ & = 4x \text{ cm}^2 \end{align}
(i)
(Consider triangle ABY)
\begin{align}
\text{Since } E \text{is the mid-point} & \text{ of } AB \text{ and } X \text{ is the mid-point of } AY, \\
\\
EX \phantom{0} & // \phantom{0} BY \phantom{000} \text{ (Mid-point theorem)} \\
\\
ED \phantom{0} & // \phantom{0} BY \phantom{000} (EXD \text{ is a straight line}) \\
\\
\therefore XD \phantom{0} & // \phantom{0} BY
\end{align}
(Consider triangle CXB)
\begin{align}
\text{Since } Y \text{ is the mid-point} & \text{ of } XC \text{ and } F \text{ is the mid-point of } BC, \\
\\
FY \phantom{0} & // \phantom{0} BX \phantom{000} \text{ (Mid-point theorem)} \\
\\
FD \phantom{0} & // \phantom{0} BX \phantom{000} (FYD \text{ is a straight line}) \\
\\
\therefore YD \phantom{0} & // \phantom{0} BX \\
\\ \\
\text{Since } XD \phantom{.} // \phantom{.} BY & \text{ and } YD \phantom{.} // \phantom{.} BX, \phantom{.} BXDY \text{ is a parallelogram}
\end{align}
(ii)
\begin{align} AX & = CY \phantom{000} \text{ (Given) [S]} \\ \\ \angle AXB & = 180^\circ - \angle BXY \phantom{000} (\text{Adjacent } \angle s \text{ on a straight line)} \\ & = 180^\circ - \angle XYD \phantom{000} (\text{Alternate } \angle s \text{, } BX \phantom{0} // \phantom{0} YD) \\ & = \angle CYD \\ \\ \angle AXB & = \angle CYD \phantom{000} \text{ [A]} \\ \\ XB & = YD \phantom{000} \text{ (Opposite sides of parallelogram } BXDY) \text{ [S]} \\ \\ \\ \therefore \triangle AXB & \text{ is congruent to } \triangle CYD \text{ (SAS)} \end{align}
(iii)
\begin{align} AX & = CY \phantom{000} \text{ (Given) [S]} \\ \\ \angle AXD & = 180^\circ - \angle DXY \phantom{000} (\text{Adjacent } \angle s \text{ on a straight line)} \\ & = 180^\circ - \angle BYX \phantom{000} (\text{Alternate } \angle s \text{, } XD \phantom{0} // \phantom{0} BY) \\ & = \angle CYB \\ \\ \angle AXD & = \angle CYB \phantom{000} \text{ [A]} \\ \\ XD & = YB \phantom{000} \text{ (Opposite sides of parallelogram } BXDY) \text{ [S]} \\ \\ \\ \therefore \triangle AXD & \text{ is congruent to } \triangle CYB \text{ (SAS)} \\ \\ \\ AB & = DC \phantom{000} (\triangle AXB \equiv \triangle CYD) \\ \\ AD & = BC \phantom{000} (\triangle AXD \equiv \triangle CYB) \\ \\ \\ \text{Since } & AB = DC \text{ and } AD = BC, \phantom{.} ABCD \text{ is a parallelogram} \end{align}
\begin{align} \text{Let } & \angle BDA = x^\circ \\ \\ \angle DBA & = \angle BDA \phantom{000} \text{(Isosceles } \triangle ADB) \\ \\ \angle BAD & = 180^\circ - \angle DBA - \angle BDA \phantom{000} (\angle \text{ sum of } \triangle) \\ & = 180 - x - x \\ & = (180 - 2x)^\circ \\ \\ \angle BCD & = 180^\circ - \angle BAD \phantom{000} (\angle s \text{ in opposite segment)} \\ & = 180 - (180 - 2x) \\ & = 180 - 180 + 2x \\ & = 2x \\ & = 2(x) \\ & = 2\angle BDA \\ \\ \therefore \angle BCD & = 2\angle BDA \phantom{0} \text{ (Shown)} \end{align}
\begin{align} \text{Let } & \angle PBC = x^\circ \\ \\ \angle CQP & = \angle PBC \phantom{000} (\angle s \text{ in the same segment)} \\ & = x^\circ \\ \\ \angle QRP & = \angle CQP \phantom{000} \text{(Alternate segment theorem)} \\ & = x^\circ \\ \\ \angle QRB & = \angle QRP \phantom{000} \text{(Common } \angle ) \\ & = x^\circ \\ & = \angle PBC \\ & = \angle RBC \phantom{000} \text{(Common } \angle ) \\ \\ \therefore \angle QRB & = \angle RBC \\ \\ \therefore BC \phantom{.} & // \phantom{.} QR \phantom{000} \text{(Converse of alternate } \angle s) \end{align}
(i)
\begin{align} PQ^2 & = PA \times PB \phantom{000000} [\text{Tangent secant theorem}] \\ \\ \text{Since tangents meet at } & P, \phantom{.} PQ = PR \\ \\ \text{Since } H \text{ is midpoint of } & QR, \phantom{.} \angle PHQ = 90^\circ \\ \\ PC^2 & = PH^2 + HC^2 \\ & = PH^2 + (QH - QC)^2 \\ & = \underbrace{PH^2}_\text{Need to find this} + QH^2 - 2(QH)(QC) + QC^2 \\ \\ \\ PQ^2 & = PH^2 + QH^2 \\ PA \times PB & = PH^2 + QH^2 \\ \\ PH^2 & = PA \times PB - QH^2 \\ \\ \\ \therefore PC^2 & = PA \times PB - QH^2 + QH^2 - 2(QH)(QC) + QC^2 \\ & = PA \times PB - 2(QH)(QC) + QC^2 \\ & = PA \times PB + QC(QC - 2QH) \\ & = PA \times PB - QC(2QH - QC) \\ & = PA \times PB - QC(QR - QC) \\ & = PA \times PB - QC(RC) \\ & = PA \times PB - QC \times RC \\ & = PA \times PB - AC \times BC \phantom{00} \text{ (Shown)} \end{align}
(ii)
\begin{align} PC^2 & = PA \times PB - AC \times BC \\ PC^2 & = PA \times PB - (PC - PA)(PB - PC) \\ PC^2 & = PA \times PB - [(PB)(PC) - PC^2 - (PA)(PB) + (PA)(PC)] \\ PC^2 & = PA \times PB - (PB)(PC) + PC^2 + (PA)(PB) - (PA)(PC) \\ 0 & = 2(PA)(PB) - (PB)(PC) - (PA)(PC) \\ (PB)(PC) + (PA)(PC) & = 2(PA)(PB) \\ PC(PB + PA) & = 2(PA)(PB) \\ {PB + PA \over 2(PA)(PB)} & = {1 \over PC} \\ {1 \over 2} \left[{PB + PA \over (PA)(PB)}\right] & = {1 \over PC} \\ {1 \over 2} \left[ {PB \over (PA)(PB)} + {PA \over (PA)(PB)} \right] & = {1 \over PC} \\ {1 \over 2} \left({1 \over PA} + {1 \over PB} \right) & = {1 \over PC} \phantom{0000} \text{(Shown)} \end{align}