A Maths Textbook Solutions >> Additional Maths 360 Solutions >>
Revision Ex 11
Please email me if you spot any mistakes or have any questions.
Solutions
Click to display or to hide
(a)
\begin{align} 2\cos x - 1 & = 4 \cos x \\ 2\cos x - 4\cos x & = 1 \\ -2\cos x & = 1 \\ \cos x & = -{1 \over 2} \phantom{000000} [\text{2nd or 3rd quadrant}] \\ \\ \text{Basic angle, } \alpha & = \cos^{-1} \left(1 \over 2\right) \\ & = 60^\circ \end{align}
\begin{align} x & = 180^\circ - 60^\circ, 180^\circ + 60^\circ \\ & = 120^\circ, 240^\circ \end{align}
(b)
\begin{align} 4\sin^2 x & = 3 \\ \sin^2 x & = {3 \over 4} \\ \sin x & = \pm \sqrt{3 \over 4} \\ \sin x & = \pm {\sqrt{3} \over 2} \phantom{000000} [\text{All 4 quadrants}] \\ \\ \text{Basic angle, } \alpha & = \sin^{-1} \left(\sqrt{3} \over 2\right) \\ & = 60^\circ \\ & = {\pi \over 3} \end{align}
\begin{align} x & = {\pi \over 3}, \pi - {\pi \over 3}, \pi + {\pi \over 3}, 2\pi - {\pi \over 3} \\ & = {\pi \over 3}, {2\pi \over 3}, {4\pi \over 3}, {5\pi \over 3} \end{align}
(c)
$$ (2\sin x+ 1)(2\cos x + 5) = 0 $$
\begin{align}
2\sin x + 1 & = 0 & \text{ or } \phantom{000000} 2\cos x + 5 & = 0 \\
2\sin x & = -1 & 2\cos x & = - 5 \\
\sin x & = {-1 \over 2} & \cos x & = -{5 \over 2} \\
& = -0.5 & & = -2.5 \text{ (Reject since } \cos x \ge -1 )
\end{align}
\begin{align}
\sin x & = -0.5
\phantom{000000} [\text{3rd or 4th quadrant}] \\
\\
\text{Basic angle, } \alpha & = \sin^{-1} (0.5) \\
& = 30^\circ
\end{align}
\begin{align} x & = 180 + 30^\circ, 360^\circ - 30^\circ \\ & = 210^\circ, 330^\circ \end{align}
(d)
$$ (2\cos x - 1)(2\cot x + 3) = 0 $$
\begin{align}
2 \cos x - 1 & = 0 & \text{ or }\phantom{00000} 2\cot x + 3 & = 0
\end{align}
\begin{align}
2 \cos x - 1 & = 0 \\
2 \cos x & = 1 \\
\cos x & = {1 \over 2}
\phantom{000000} [\text{1st or 4th quadrant}] \\
\\
\text{Basic angle, } \alpha & = \cos^{-1} \left(1 \over 2\right) \\
& = 60^\circ \\
& = {\pi \over 3}
\end{align}
\begin{align} x & = {\pi \over 3}, 2\pi - {\pi \over 3} \\ & = {\pi \over 3}, {5\pi \over 3} \\ \\ \\ 2 \cot x + 3 & = 0 \\ 2 \cot x & =- 3 \\ \cot x & = -{3 \over 2} \\ {1 \over \tan x} & = -{3 \over 2} \\ 2 & = -3 \tan x \\ -{2 \over 3} & = \tan x \phantom{000000} [\text{2nd or 4th quadrant}] \\ \\ \text{Basic angle, } \alpha & = \tan^{-1} \left(2 \over 3\right) \\ & = 0.588 \end{align}
\begin{align} x & = \pi - 0.588, 2\pi - 0.588 \\ & = 2.5535, 5.6951 \\ & \approx 2.55, 5.70 \\ \\ \\ \therefore x & = {\pi \over 3}, {5\pi \over 3}, 2.55, 5.70 \end{align}
(i)
\begin{align} \tan A & > 0 \phantom{000000} [\text{1st or 3rd quadrant}] \\ \\ \cos B & < 0 \phantom{000000} [\text{2nd or 3rd quadrant}] \\ \\ \implies A & \text{ and } B \text{ are in the 3rd quadrant} \\ \\ \\ \tan A & = {3 \over 4} \\ {Opp \over Adj} & = {-3 \over -4} \end{align}
\begin{align} x & = \sqrt{(-3)^2 + (-4)^2} \\ & = 5 \\ \\ \sin A & = {Opp \over Hyp} \\ & = -{3 \over 5} \end{align}
(ii)
\begin{align} \cos B & = -{3 \over 5} \\ {Adj \over Hyp} & = {-3 \over 5} \end{align}
\begin{align} \sqrt{ (5)^2 - (-3)^2} & = 4 \\ \\ x & = -4 \\ \\ \tan (-B) & = -\tan B \\ & = - {Opp \over Adj} \\ & = - {-4 \over -3} \\ & = -{4 \over 3} \end{align}
(iii)
\begin{align} \sec A \tan B & = \left(1 \over \cos A\right)\tan B \\ & = \left[ {1 \over -{4 \over 5}} \right] \left(4 \over 3\right) \\ & = \left(-{5 \over 4} \right) \left(4 \over 3\right) \\ & = -{5 \over 3} \end{align}
(i)
\begin{align} \text{Since amplitude} & = 3, a = 3 \\ \\ \text{Period} & = 60^\circ \\ {360^\circ \over b} & = 60^\circ \\ 360 & = 60b \\ {360 \over 60} & = b \\ 6 & = b \end{align}
(ii)(a)
\begin{align} c & = \text{Minimum} + \text{Amplitude} \\ & = 4 + 3 \\ & = 7 \end{align}
(ii)(b)
\begin{align} y & = a \cos bx + 7 \\ y & = 3 \cos 6x + 7 \\ \\ \text{Amplitude} & = 3 \\ \\ \text{Center line: } & y = 7 \\ \\ \text{Max. value} & = 7 + 3 = 10 \\ \text{Min. value} & = 7 - 3 = 4 \\ \\ \text{Period} & = 60^\circ \\ \\ \text{No. of cycles} & = {180^\circ \over 60^\circ} \\ & = 3 \end{align}
(i)
\begin{align} y & = 5 \tan 2x \\ \\ \text{Period} & = {\pi \over b} \\ & = {\pi \over 2} \\ \\ \text{No. of cycles} & = {2\pi \over {\pi \over 2}} \\ & = 4 \\ \\ \text{Vertical asymptotes: } & x = {\pi \over 4}, x = {3\pi \over 4}, x = {5\pi \over 4}, x = {7\pi \over 4} \end{align}
(ii)
\begin{align} y & = {x \over \pi} \\ & = {1 \over \pi} x \phantom{000000} [y = mx + c] \\ \\ \text{When } & x = 0, \\ y & = {1 \over \pi}(0) \\ & = 0 \\ \\ \text{When } & x = \pi, \\ y & = {1 \over \pi} (\pi) \\ & = 1 \\ \\ \text{Line passes} & \text{ through } (0,0) \text{ and } (\pi, 1) \end{align}
\begin{align} x & = 5\pi \tan 2x \\ \underbrace{x \over \pi}_\text{Line} & = \underbrace{5\tan 2x}_\text{Curve} \\ \\ \therefore 3 & \text{ solutions [exclude (0,0)]} \end{align}
(a)
\begin{align} 4 \tan^{-1} 1 - \cos^{-1} \left(-{\sqrt{3} \over 2} \right) & = 4 \left(\pi \over 4\right) - \cos^{-1} \left(-{\sqrt{3} \over 2} \right) \phantom{000000} \left[ \tan {\pi \over 4} = 1 \text{ and } -{\pi \over 2} < \tan^{-1} x < {\pi \over 2} \right] \\ & = \pi - \cos^{-1} \left(-{\sqrt{3} \over 2} \right) \\ & = \pi - \left[\pi - {\pi \over 6} \right] \phantom{000000000000000} \left[ \cos {\pi \over 6} = {\sqrt{3} \over 2} \text{ and } 0 \le \cos^{-1} x \le \pi \right] \\ & = \pi - {5\pi \over 6} \\ & = {\pi \over 6} \end{align}
(b)
\begin{align} \cos \left[ \sin^{-1} \left(-{1 \over \sqrt{2}}\right) \right] & = \cos \left(-{\pi \over 4}\right) \phantom{00000000} \left[ \sin {\pi \over 4} = {1 \over \sqrt{2}} \text{ and } -{\pi \over 2} \le \sin^{-1} x \le {\pi \over 2} \right] \\ & = \cos {\pi \over 4} \phantom{00000000000.} \left[ \cos (-\theta) = \cos \theta \right] \\ & = {1 \over \sqrt{2}} \end{align}
(i)
\begin{align} y & = 2 \sin x \\ \\ \text{Amplitude} & = 2 \\ \\ \text{Max. value} & = 2 \\ \text{Min. value} & = -2 \\ \\ \text{Period} & = {2\pi \over 1} \\ & = 2\pi \\ \\ \text{No. of cycles} & = {2\pi \over 2\pi} \\ & = 1 \\ \\ \\ y & = \cos 2x \\ \\ \text{Amplitude} & = 1 \\ \\ \text{Max. value} & = 1 \\ \text{Min. value} & = -1 \\ \\ \text{Period} & = {2\pi \over 2} \\ & = \pi \\ \\ \text{No. of cycles} & = {2\pi \over \pi} \\ & = 2 \end{align}
(ii)(a) Draw a horizontal line y = 0.6 on the graph from (i). There are 4 points of intersection with the curve y = cos 2x
$$ 4 \text{ solutions} $$
(ii)(b) From the graph in (i), there are two points of intersection between the curves
$$ 2 \text{ solutions} $$
(ii)(c)
\begin{align} \cos 2x - 2\sin x & = 1 \\ \underbrace{\cos 2x}_\text{Second curve} & = \underbrace{2\sin x + 1}_\text{Third curve} \end{align}
Translate the graph of $y = 2 \sin x$ by 1 units in the positive $y$-direction:
$$ 4 \text{ solutions} $$
(ii)(d)
\begin{align} 2|\sec 2x| & = |\text{cosec } x | \\ 2 \left| 1 \over \cos 2x \right| & = \left| 1 \over \sin x \right| \\ 2 \left(1 \over |\cos 2x | \right) & = {1 \over |\sin x | } \\ { 2 \over |\cos 2x| } & = {1 \over |\sin x| } \\ 2|\sin x| & = |\cos 2x| \\ |2||\sin x| & = |\cos 2x| \\ |2\sin x| & = |\cos 2x| \end{align}
Obtain the modulus of the curves from (i) by reflecting the portions below the x-axis:
$$ 4 \text{ solutions} $$
(a)
\begin{align}
(2\sin^2 x + \sin x)(\tan x - 3\cos 20^\circ) & = 0 \\
\sin x(2\sin x + 1)(\tan x - 3\cos 20^\circ) & = 0 \\
\\
\sin x = 0 \phantom{000} \text{ or } \phantom{000} 2 \sin x + 1 & = 0 \phantom{000} \text{ or } \phantom{000} \tan x - 3\cos 20^\circ = 0
\end{align}
$$ \sin x = 0 $$
\begin{align} x & = 0^\circ, 180^\circ, 360^\circ \\ \\ \\ 2\sin x + 1 & = 0 \\ 2\sin x & = - 1\\ \sin x & = {-1 \over 2} \\ \sin x & = -{1 \over 2} \phantom{000000} [\text{3rd or 4th quadrant}] \\ \\ \text{Basic angle, } \alpha & = \sin^{-1} \left(1 \over 2\right) \\ & = 30^\circ \end{align}
\begin{align} x & = 180^\circ + 30^\circ, 360^\circ - 30^\circ \\ & = 210^\circ, 330^\circ \\ \\ \\ \tan x - 3\cos 20^\circ & = 0 \\ \tan x & = 3\cos 20^\circ \\ \tan x & = 2.81907 \phantom{000000} [\text{1st or 3rd quadrant}] \\ \\ \text{Basic angle, } \alpha & = \tan^{-1} (2.81907) \\ & = 70.469^\circ \end{align}
\begin{align}
x & = 70.469^\circ, 180^\circ + 70.469^\circ \\
& = 70.469^\circ, 250.469^\circ \\
& \approx 70.5^\circ, 250.5^\circ
\end{align}
$$ \therefore x = 0^\circ, 70.5^\circ, 180^\circ, 210^\circ, 250.5^\circ, 330^\circ, 360^\circ $$
(b)
\begin{align} |3 \tan x - 1| & = 2 \\ 3 \tan x - 1 & = \pm 2 \\ \\ \\ 3 \tan x - 1 & = 2 \\ 3 \tan x & = 3 \\ \tan x & = {3 \over 3} \\ \tan x & = 1 \phantom{000000} [\text{1st or 3rd quadrant}] \\ \\ \text{Basic angle, } \alpha & = \tan^{-1} (1) \\ & = 45^\circ \end{align}
\begin{align} x & = 45^\circ, 180^\circ + 45^\circ \\ & = 45^\circ, 225^\circ \\ \\ \\ 3 \tan x - 1 & = -2 \\ 3 \tan x & = - 1 \\ \tan x & = -{1 \over 3} \phantom{000000} [\text{2nd or 4th quadrant}] \\ \\ \text{Basic angle, } \alpha & = \tan^{-1} \left(1 \over 3\right) \\ & = 18.434^\circ \end{align}
\begin{align} x & = 180^\circ - 18.434^\circ, 360^\circ - 18.434^\circ \\ & = 161.566^\circ, 341.566^\circ \\ & \approx 161.6^\circ, 341.6^\circ \\ \\ \\ \therefore x & = 45^\circ, 161.16^\circ, 225^\circ, 341.6^\circ \end{align}
(c)
\begin{align}
\tan x (\sqrt{2}\cos x + 1) & = 0 \\
\\
\tan x = 0 \phantom{000} & \text{ or } \phantom{000} \sqrt{2}\cos x + 1 = 0
\end{align}
$$ \tan x = 0$$
\begin{align} x & = \pi \\ \\ \\ \sqrt{2}\cos x + 1 & = 0 \\ \sqrt{2}\cos x & = -1 \\ \cos x & = {-1 \over \sqrt{2}} \\ \cos x & = -{1 \over \sqrt{2}} \phantom{000000} [\text{2nd or 3rd quadrant}] \\ \\ \text{Basic angle, } \alpha & = \cos^{-1} \left(1 \over \sqrt{2}\right) \\ & = {\pi \over 4} \end{align}
\begin{align} x & = \pi - {\pi \over 4}, \pi + {\pi \over 4} \\ & = {3\pi \over 4}, {5\pi \over 4} \\ \\ \therefore x & = {3\pi \over 4}, \pi, {5\pi \over 4} \end{align}
(d)
\begin{align} {2 \over \sec x - 1} & = 3 \\ 2 & = 3(\sec x - 1) \\ 2 & = 3\sec x - 3 \\ 5 & = 3\sec x \\ 5 & = 3 \left(1 \over \cos x\right) \\ 5 & = {3 \over \cos x} \\ 5\cos x & = 3 \\ \cos x & = {3 \over 5} \phantom{000000} [\text{1st or 4th quadrant}] \\ \\ \text{Basic angle, } \alpha & = \cos^{-1} \left(3 \over 5\right) \\ & = 0.92729 \end{align}
\begin{align} x & = 0.92729, 2\pi - 0.92729 \\ & = 0.92729, 5.3558 \\ & \approx 0.927, 5.36 \end{align}
(i)
\begin{align} \text{Maximum} & = 2 \\ \\ \text{Minimum} & = -6 \\ \\ \text{Amplitude} & = {\text{Maximum} - \text{Minimum} \over 2} \\ & = {2 - (-6) \over 2} \\ & = 4 \\ \\ \text{Period} & = 8\pi \end{align}
(ii)
\begin{align} \text{Since amplitude} = 4 & \text{ and the shape of the graph is inverted,} \\ a & = -4 \\ \\ \text{Period} & = 8\pi \\ {2\pi \over b} & = 8\pi \\ {2\pi \over 8\pi} & = b \\ {1 \over 4} & = b \\ \\ c & = \text{Maximum} - \text{Amplitude} \\ & = 2 - 4 \\ & = - 2 \end{align}
(iii)
$$ \text{Since period} = 8\pi, \text{ the next maximum point after } (6\pi, 2) \text{ is } (14\pi, 2) $$
(iv)
\begin{align} \text{Since period} = 8\pi, \text{ the minimum } & \text{point before } (2\pi, -6) \text{ is } (-6\pi, -6). \\ \\ \therefore p = -6\pi & \text{ and } q = -6 \end{align}
(i)
\begin{align} \text{Since } -90^\circ < \tan^{-1} & \phantom{.} x < 90^\circ, \angle A \text{ is in the 4th quadrant} \\ \\ A & = \tan^{-1} (-2) \\ \tan A & = -2 \\ {Opp \over Adj} & = -{2 \over 1} \end{align}
\begin{align} x & = \sqrt{(-2)^2 + 1^2} \\ x & = \sqrt{5} \\ \\ \sin (-A) & = -\sin A \\ & = - \left(-{2 \over \sqrt{5}}\right) \\ & = {2 \over \sqrt{5}} \end{align}
(ii)
\begin{align} \cot A & = {1 \over \tan A} \\ & = {1 \over -2} \\ & = -{1 \over 2} \end{align}
(iii)
\begin{align} \sin \left({\pi \over 2} - A\right) \cos 150^\circ & = \sin (90^\circ - A) \cos 150^\circ \\ & = \cos A \cos 150^\circ \\ & = \cos A \cos (180^\circ - 30^\circ) \\ & = \cos A (- \cos 30^\circ) \phantom{0000000000} [\cos (180^\circ - \theta) = -\cos \theta] \\ & = {1 \over \sqrt{5}} \left(- {\sqrt{3} \over 2}\right) \\ & = -{\sqrt{3} \over 2\sqrt{5}} \\ & = -{\sqrt{3} \over 2\sqrt{5}} \times {\sqrt{5} \over \sqrt{5}} \phantom{000000000000} [\text{Rationalise denominator}] \\ & = -{\sqrt{15} \over 2(5)} \\ & = -{\sqrt{15} \over 10} \end{align}
(i)
\begin{align} \text{Consider: } & y = 2 \cos x - 1 \\ \\ \text{Amplitude} & = 2 \\ \\ \text{Center line: } & y = -1 \\ \\ \text{Max. value} & = -1 + 2 = 1 \\ \text{Min. value} & = -1 - 2 = -3 \\ \\ \text{Period} & = {2\pi \over 1} \\ & = 2\pi \\ \\ \text{No. of cycles} & = {2\pi \over 2\pi} \\ & = 1 \end{align}
Obtain the modulus graph by reflecting the portions below the x-axis:
\begin{align} y & = -{2x \over 3\pi} + 1 \\ y & = -{2 \over 3\pi} x + 1 \\ \\ \text{When } & x = 0, \\ y & = -{2 \over 3\pi} (0) + 1 \\ & = 0 + 1 \\ & = 1 \\ \\ \text{When } & x = \pi, \\ y & = -{2 \over 3\pi} (\pi) + 1 \\ & = -{2 \over 3} + 1 \\ & = {1 \over 3} \\ \\ \text{Line passes} & \text{ through } (0, 1) \text{ and } \left(\pi, {1 \over 3}\right) \end{align}
(ii) From the previous part, there are 3 points of intersection between line and curve
\begin{align} -2x + 3\pi & = 3\pi|2 \cos x - 1| \\ {-2x + 3\pi \over 3\pi} & = |2\cos x - 1| \\ {-2x \over 3\pi} + {3\pi \over 3\pi} & = |2\cos x - 1| \\ \underbrace{{-2x \over 3\pi} + 1}_\text{Line} & = \underbrace{|2\cos x -1|}_\text{Curve} \\ \\ \therefore 3 & \text{ solutions} \end{align}
(i)
\begin{align} \sqrt{3} \tan x + 1 & = 0 \\ \sqrt{3} \tan x & = - 1 \\ \tan x & = {-1 \over \sqrt{3}} \\ \tan x & = -{1 \over \sqrt{3}} \phantom{000000} [\text{2nd or 4th quadrant}] \\ \\ \text{Basic angle, } \alpha & = \tan^{-1} \left(1 \over \sqrt{3}\right) \\ & = 30^\circ \end{align}
\begin{align} x & = 180^\circ - 30^\circ, 360^\circ - 30^\circ \\ & = 150^\circ, 330^\circ \end{align}
(ii)
\begin{align} \text{Consider } & y = \sqrt{3} \tan x \\ \\ \text{Period} & = {180^\circ \over 1} \\ & = 180^\circ \\ \\ \text{No. of cycles} & = {360^\circ \over 180^\circ} \\ & = 2 \\ \\ \text{Vertical asymptotes: } & x = 90^\circ, x = 270^\circ \end{align}
Shift the graph up by 1 unit to obtain $y = \sqrt{3} \tan x + 1$:
(iii) Referring to the graph in (ii), look for the regions above the x-axis
$$ \therefore 0^\circ \le x < 90^\circ \text{ or } 150^\circ \le x < 270^\circ \text{ or } 330^\circ \le x \le 360^\circ $$
First part:
\begin{align} y & = \cos 2x \\ \\ \text{Amplitude} & = 1 \\ \\ \text{Max. value} & = 1 \\ \text{Min. value} & = -1 \\ \\ \text{Period} & = {2\pi \over 2} \\ & = \pi \\ \\ \text{No. of cycles} & = {\pi \over \pi} \\ & = 1 \\ \\ \\ y & = 2 \sin 6x \\ \\ \text{Amplitude} & = 2 \\ \\ \text{Max. value} & = 2 \\ \text{Min. value} & = -2 \\ \\ \text{Period} & = {2\pi \over 6} \\ & = {\pi \over 3} \\ \\ \text{No. of cycles} & = {\pi \over {\pi \over 3}} \\ & = 3 \end{align}
(i)
\begin{align} \text{First value of } x & = \alpha \\ \\ \text{Other value of } x & = {\pi \over 2} + \alpha \end{align}
(ii) The graphs repeat for one more cycle
\begin{align} \text{Other value of } x & = \pi + \alpha \end{align}