A Maths Textbook Solutions >> Additional Maths 360 Solutions >>
Revision Ex 9
Please email me if you spot any mistakes or have any questions.
Solutions
Click to display or to hide
(i)
\begin{align} \text{Gradient of } AC & = {4 - 0 \over 4 - 6} \\ & = -2 \\ \\ y & = mx + c \\ y & = -2x + c \\ \\ \text{Using } & C(6, 0), \\ 0 & = -2(6) + c \\ 0 & = -12 + c \\ 12 & = c \\ \\ \text{Eqn of } AC\text{: } \phantom{0} y & = - 2x + 12 \phantom{000} \text{ --- (1)} \\ \\ \text{Eqn of parabola: } \phantom{0}y^2 & = 4x \phantom{000} \text{ --- (2)} \\ \\ \text{Substitute } & \text{(1) into (2),} \\ (-2x + 12)^2 & = 4x \\ (-2x)^2 + 2(-2x)(12) + (12)^2 & = 4x \\ 4x^2 - 48x + 144 & = 4x \\ 4x^2 - 48x - 4x + 144 & = 0 \\ 4x^2 - 52x + 144 & = 0 \\ x^2 - 13x + 36 & = 0 \\ (x - 9)(x - 4) & = 0 \\ \\ x - 9 = 0 \phantom{00}&\text{or} \phantom{00} x - 4 = 0 \\ x = 9 \phantom{00}& \phantom{or-400} x = 4 \text{ (Point } A) \\ \\ \text{Substitute } & x = 9 \text{ into (1),} \\ y & = -2(9) + 12 \\ & = -6 \\ \\ \therefore & \phantom{0} B(9, - 6) \end{align}
(ii) The distance between two points can be found by $ \sqrt{ (x_1 - x_2)^2 + (y_1 - y_2)^2 } $
\begin{align} \text{Length of } AC & = \sqrt{ (4 - 6)^2 + (4 - 0)^2 } \\ & = \sqrt{20} \\ & = \sqrt{4}\sqrt{5} \\ & = 2\sqrt{5} \text{ units} \\ \\ \text{Length of } CB & = \sqrt{ (6 - 9)^2 + [0 - (-6)]^2 } \\ & = \sqrt{45} \\ & = \sqrt{9} \sqrt{5} \\ & = 3\sqrt{5} \text{ units} \end{align}
(iii)
\begin{align} \require{cancel} AC & : CB \\ 2\cancel{\sqrt{5}} & : 3\cancel{\sqrt{5}} \\ 2 &: 3 \end{align}
\begin{align} y^2 & = x \phantom{000} \text{ --- (1)} \\ \\ y & = mx + 1 \phantom{000} \text{ --- (2)} \\ \\ \text{Substitute } & \text{(2) into (1),} \\ (mx + 1)^2 & = x \\ (mx)^2 + 2(mx)(1) + 1^2 & = x \\ m^2 x^2 + 2mx - x + 1 & = mx \\ m^2 x^2 + (2m - 1)x + 1 & = 0 \phantom{00000} [a = m^2, b = 2m - 1, c = 1] \\ \\ b^2 - 4ac & > 0 \phantom{00000} [\text{Two real and distinct roots}] \\ (2m - 1)^2 - 4(m^2)(1) & > 0 \\ (2m)^2 - 2(2m)(1) + (1)^2 - 4m^2 & > 0 \\ 4m^2 - 4m + 1 - 4m^2 & > 0 \\ - 4m + 1 & > 0 \\ -4m & > - 1 \\ 4m & < 1 \\ m & < {1 \over 4} \\ \\ \text{Since } m & > 0, \\ \\ 0 < m & < {1 \over 4} \text{ (Shown)} \end{align}
(i)
Since the $x$-axis is tangent to the circle, the $y$-coordinate of the centre of the circle is $13$ \begin{align} \text{Let centre of circle be } & (a, 13). \\ \\ (x - a)^2 + (y - 13)^2 & = 13^2 \\ \\ \text{When } x = 10 \text{ and } & y = 18, \phantom{000} [\text{since circle passes through } P(10, 18)]\\ (10 - a)^2 + (18 - 13)^2 & = 13^2 \\ (10)^2 - 2(10)(a) + (a)^2 + 5^2 & = 169 \\ 100 - 20a + a^2 + 25 & = 169 \\ a^2 - 20a - 44 & = 0 \\ (a - 22)(a + 2) & = 0 \\ \\ a - 22 = 0 \phantom{00}&\text{or}\phantom{00} a + 2 = 0 \\ a = 22 \phantom{0}&\phantom{or00+2} a = - 2 \\ \\ \text{For centre } & (22, 13), \\ (x - 22)^2 + (y - 13)^2 & = 13^2 \\ (x)^2 - 2(x)(22) + (22)^2 + (y)^2 - 2(y)(13) + 13^2 & = 169 \\ x^2 - 44x + 484 + y^2 - 26y + 169 & = 169 \\ x^2 + y^2 - 44x - 26y + 484 & = 0 \\ \\ \\ \text{For centre } & (-2, 13), \\ [x - (-2)]^2 + (y - 13)^2 & = 13^2 \\ (x + 2)^2 + (y - 13)^2 & = 169 \\ (x)^2 + 2(x)(2) + (2)^2 + (y)^2 - 2(y)(13) + (13)^2 & = 169 \\ x^2 + 4x + 4 + y^2 - 26y + 169 & = 169 \\ x^2 + y^2 + 4x - 26y + 4 & = 0 \end{align}
(ii)
For the circle with centre $(22, 13)$, the centre of the reflected circle is $(22, -13)$ (radius is still $13$ units) \begin{align} (x - 22)^2 + [y - (-13)]^2 & = 13^2 \\ (x - 22)^2 + (y + 13)^2 & = 169 \\ (x)^2 - 2(x)(22) + (22)^2 + (y)^2 + 2(y)(13) + 13^2 & = 169 \\ x^2 - 44x + 484 + y^2 + 26y + 169 & = 169 \\ x^2 + y^2 - 44x + 26y + 484 & = 0 \end{align}
For the circle with centre $(-2, 13)$, the centre of the reflected circle is $(-2, -13)$ (radius is still $13$ units) \begin{align} [x - (-2)]^2 + [y - (-13)]^2 & = 13^2 \\ (x + 2)^2 + (y + 13)^2 & = 169 \\ (x)^2 + 2(x)(2) + (2)^2 + (y)^2 + 2(y)(13) + 13^2 & = 169 \\ x^2 + 4x + 4 + y^2 + 26y + 169 & = 169 \\ x^2 + y^2 + 4x + 26y + 4 & = 0 \end{align}
(i)
\begin{align} \text{Mid-point of } AB, C & = \left( {-2 + 6 \over 2}, {4 + (-2) \over 2} \right) \\ & = (2, 1) \end{align}
(ii)
\begin{align} \text{Gradient of } AB & = {4 - (-2) \over -2 - 6} \\ & = -{3 \over 4} \\ \\ \text{Gradient of } DE \times -{3 \over 4} & = - 1 \\ \text{Gradient of } DE & = -1 \div -{3 \over 4} \\ & = {4 \over 3} \\ \\ y & = mx + c \\ y & = {4 \over 3}x + c \\ \\ \text{Using } & C(2, 1), \\ 1 & = {4 \over 3}(2) + c \\ 1 & = {8 \over 3} + c \\ -{5 \over 3} & = c \\ \\ \text{Eqn of diameter } DE: \phantom{.} y & = {4 \over 3}x - {5 \over 3} \\ 3y & = 4x - 5 \\ 3y - 4x + 5 & = 0 \end{align}
(iii)
\begin{align} \text{Eqn of } DE: \phantom{.} y & = {4 \over 3}x - {5 \over 3} \phantom{000} \text{ --- (1)} \\ \\ \text{Radius of circle} & = \text{Length of } AC \\ & = \sqrt{ (-2 - 2)^2 + (4 - 1)^2} \\ & = 5 \text{ units} \\ \\ \text{Eqn of circle: } \phantom{0} & (x - 2)^2 + (y - 1)^2 = 5^2 \phantom{000} \text{ --- (2)} \end{align} \begin{align} \text{Substitute } & \text{(1) into (2),} \\ (x - 2)^2 + \left( {4 \over 3}x - {5 \over 3} - 1 \right)^2 & = 5^2 \\ (x - 2)^2 + \left( {4 \over 3}x - {8 \over 3} \right)^2 & = 25 \\ (x)^2 - 2(x)(2) + (2)^2 + \left( {4 \over 3}x \right)^2 - 2\left({4 \over 3}x\right)\left(8 \over 3\right) + \left(8 \over 3\right)^2 & = 25 \\ x^2 - 4x + 4 + {16 \over 9}x^2 - {64 \over 9}x + {64 \over 9} & = 25 \\ 9x^2 - 36x + 36 + 16x^2 - 64x + 64 & = 225 \phantom{00000} [\text{Multiply by } 9] \\ 25x^2 - 100x - 125 & = 0 \\ x^2 - 4x - 5 & = 0 \\ (x - 5)(x + 1) & = 0 \\ \\ x - 5 = 0 \phantom{00}&\text{or}\phantom{00} x + 1 = 0 \\ x = 5 \phantom{00} &\phantom{or+100} x = - 1 \\ \\ \text{Substitute } & x = 5 \text{ into (1),} \\ y & = {4 \over 3}(5) - {5 \over 3} \\ & = 5 \\ \\ \therefore & \phantom{0} D(5, 5) \\ \\ \text{Substitute } & x = - 1 \text{ into (2),} \\ y & = {4 \over 3}(-1) - {5 \over 3} \\ & = - 3 \\ \\ \therefore & \phantom{0} E(-1, -3) \end{align}
(i)
\begin{align} x^2 + y^2 + 6x - 8y & = 0 \phantom{000} \text{ --- (1)} \\ \\ y & = mx - {1 \over 3} \phantom{000} \text{ --- (2)} \\ \\ \text{Substitute } & \text{(2) into (1),} \\ x^2 + \left(mx - {1 \over 3}\right)^2 + 6x - 8\left(mx - {1 \over 3}\right) & = 0 \\ x^2 + (mx)^2 - 2(mx)\left(1 \over 3\right) + \left(1 \over 3\right)^2 + 6x - 8mx + {8 \over 3} & = 0 \\ x^2 + m^2 x^2 - {2 \over 3}mx + {1 \over 9} + 6x - 8mx + {8 \over 3} & = 0 \\ x^2 + m^2 x^2 + 6x - {26 \over 3}mx + {25 \over 9} & = 0 \\ 9x^2 + 9m^2 x^2 + 54x - 78mx + 25 & = 0 \\ (9 + 9m^2)x^2 + (54 - 78m)x + 25 & = 0 \\ \\ [a = 9 + 9m^2, b = 54 - 78m, & \phantom{.} c = 25] \end{align} \begin{align} b^2 - 4ac & = (54 - 78m)^2 - 4(9 + 9m^2)(25) \\ & = (54)^2 - 2(54)(78m) + (78m)^2 - 900 - 900m^2 \\ & = 2916 - 8424m + 6084m^2 - 900 - 900m^2 \\ & = 6084m^2 - 900m^2 - 8424m + 2916 - 900 \\ & = 5184m^2 - 8424m + 2016 \\ & = 72(72m^2 - 117m + 28) \\ & = 72(24m - 7)(3m - 4) \end{align} \begin{align} b^2 - 4ac & > 0 \\ 72(24m - 7)(3m - 4) & > 0 \\ (24m - 7)(3m - 4) & > 0 \end{align}
$$ \therefore m < {7 \over 24} \text{ or } m > {4 \over 3} $$
(ii)
\begin{align} b^2 - 4ac & = 0 \\ 72(24m - 7)(3m - 4) & = 0 \\ (24m - 7)(3m - 4) & = 0 \\ \\ 24m - 7 = 0 \phantom{00}&\text{or}\phantom{00} 3m - 4 = 0 \\ 24m = 7 \phantom{00} &\phantom{or00-4} 3m = 4 \\ m = {7 \over 24} \phantom{.} &\phantom{or00-43} m = {4 \over 3} \end{align}
(iii)
\begin{align} b^2 - 4ac & < 0 \\ 72(24m - 7)(3m - 4) & < 0 \\ (24m - 7)(3m - 4) & < 0 \end{align}
\begin{align} \therefore {7 \over 24} < m < {4 \over 3} \end{align}
(i)
\begin{align} y^2 & = -4x \phantom{000} \text{ --- (1)} \\ \\ y & = 2x + 12 \phantom{000} \text{ --- (2)} \\ \\ \text{Substitute } & \text{(2) into (1),} \\ (2x + 12)^2 & = -4x \\ (2x)^2 + 2(2x)(12) + (12)^2 & = -4x \\ 4x^2 + 48x + 144 & = - 4x \\ 4x^2 + 48x + 4x + 144 & = 0 \\ 4x^2 + 52x + 144 & = 0 \\ x^2 + 13x + 36 & = 0 \\ (x + 4)(x + 9) & = 0 \\ \\ x + 4 = 0 \phantom{000}&\text{or}\phantom{00} x + 9 = 0 \\ x = - 4 \phantom{.0} &\phantom{or00+9} x = - 9 \\ \\ \text{Substitute } & x = -4 \text{ into (2),} \\ y & = 2(-4) + 12 \\ & = 4 \\ \\ \therefore & \phantom{0} B(-4, 4) \\ \\ \text{Substitute } & x = - 9 \text{ into (1),} \\ y & = 2(-9) + 12 \\ & = -6 \\ \\ \therefore & \phantom{0} A(-9, -6) \end{align}
(ii)
\begin{align} \text{Length of } AB & = \sqrt{ (x_2 - x_1)^2 + (y_2 - y_1)^2} \\ & = \sqrt{ [-9 - (-4)]^2 + (-6 - 4)^2 } \\ & = \sqrt{ 125} \\ & = \sqrt{25} \sqrt{5} \\ & = 5\sqrt{5} \text{ units} \end{align}
(iii)
\begin{align} \text{Area of } \triangle CAB & = {1 \over 2} \left| \begin{matrix} -4 & -4 & -9 & -4 \\ -4 & 4 & -6 & -4 \end{matrix} \right| \\ & = {1 \over 2} [(-4)(4)+(-4)(-6)+(-9)(-4)] \\ & \phantom{=.} - {1 \over 2} [(-4)(-4)+(4)(-9)+(-6)(-4)] \\ & = 20 \text{ sq. units} \end{align}
(iv)
\begin{align} \text{Area of } \triangle CAB & = {1 \over 2} \times \text{Base} \times {Height} \\ 20 & = {1 \over 2} (AB) (h) \\ 20 & = {1 \over 2} (5\sqrt{5})(h) \\ 40 & = 5\sqrt{5} h \\ \\ h & = {40 \over 5\sqrt{5}} \\ & = {8 \over \sqrt{5}} \\ & = {8 \over \sqrt{5}} \times {\sqrt{5} \over \sqrt{5}} \phantom{000000} [\text{Rationalise denominator}] \\ & = {8\sqrt{5} \over 5} \\ \\ \therefore \text{Perp. distance from } C \text{ to } AB & = {8\sqrt{5} \over 5} \text{ units} \end{align}
(i)
\begin{align} y & = mx \phantom{000} \text{ --- (1)} \\ \\ x^2 + y^2 - 4mx + 3 & = 0 \phantom{000} \text{ --- (2)} \\ \\ \text{Substitute } & \text{(1) into (2),} \\ x^2 + (mx)^2 - 4mx + 3 & = 0 \\ x^2 + m^2 x^2 - 4mx + 3 & = 0 \\ (1 + m^2)x^2 + (-4m)x + 3 & = 0 \\ \\ [a = 1 + m^2, b = -4m, & \phantom{.} c = 3] \\ \\ b^2 - 4ac & < 0 \phantom{00000} [\text{No real roots}] \\ (-4m)^2 - 4(1 + m^2)(3) & < 0 \\ 16m^2 - 12 - 12m^2 & < 0 \\ 4m^2 - 12 & < 0 \\ m^2 - 3 & < 0 \\ (m)^2 - (\sqrt{3})^2 & < 0 \\ (m + \sqrt{3})(m - \sqrt{3}) & < 0 \end{align}
\begin{align} -\sqrt{3} < & m < \sqrt{3} \\ -1.732 < & m < 1.732 \\ \\ \text{Since } m & \text{ is a positive integer,} \\ m & = 1 \end{align}
(ii)
\begin{align} \text{When } & m = 1, \\ x^2 + y^2 - 4(1)x + 3 & = 0 \\ x^2 + y^2 - 4x + 3 & = 0 \\ x^2 + y^2 + 2(-2)x + 2(0)y + 3 & = 0 \\ \\ \text{Comparing with } x^2 + y^2 & + 2gx + 2fy + c = 0, \\ g & = - 2 \\ f & = 0 \\ c & = 3 \\ \\ \therefore \text{Centre } & (2, 0) \\ \\ \text{Radius} & = \sqrt{ g^2 + f^2 - c } \\ & = \sqrt{ (-2)^2 + (0)^2 - 3 } \\ & = 1 \text{ units} \end{align}
The two possible tangents (in blue) are perpendicular to the radius of the circle (Circle property from E Maths). Note that both tangents have gradient of $1$ (since $m = 1$)
\begin{align} \text{Gradient of diameter} \times 1 & = -1 \\ \text{Gradient of diameter} & = -1 \\ \\ y & = mx + c \\ y & = -x + c \\ \\ \text{Using} & \text{ centre (2, 0)}, \\ 0 & = -(2) + c \\ 0 & = -2 + c \\ 2 & = c \\ \\ \text{Equation of diameter: } \phantom{0} y & = 2 - x \phantom{000} \text{ --- (1)} \\ \\ \text{Equation of circle: } \phantom{0} x^2 + y^2 - 4x + 3 & = 0 \phantom{000} \text{ --- (2)} \\ \\ \text{Substitute } & \text{(1) into (2),} \\ x^2 + (2 - x)^2 - 4x + 3 & = 0 \\ x^2 + (2)^2 - 2(2)(x) + (x)^2 - 4x + 3 & = 0 \\ x^2 + 4 - 4x + x^2 - 4x + 3 & = 0 \\ 2x^2 - 8x + 7 & = 0 \\ \\ x & = {-b \pm \sqrt{ b^2 - 4ac } \over 2a} \\ & = { -(-8) \pm \sqrt{ (-8)^2 - 4(2)(7) } \over 2(2) } \\ & = { 8 \pm \sqrt{ 8 } \over 4} \\ & = { 8 \pm \sqrt{4} \sqrt{2} \over 4} \\ & = { 8 \pm 2\sqrt{2} \over 4} \\ & = 2 \pm {1 \over 2} \sqrt{2} \\ \\ \text{Substitute } & x = 2 + {1 \over 2}\sqrt{2} \text{ into (1),} \\ y & = 2 - \left(2 + {1 \over 2}\sqrt{2}\right) \\ & = -{1 \over 2} \sqrt{2} \\ \\ \therefore & \phantom{0} \left(2 + {1 \over 2}\sqrt{2}, -{1 \over 2}\sqrt{2} \right) \\ \\ \text{Substitute } & x = 2 - {1 \over 2}\sqrt{2} \text{ into (2),} \\ y & = 2 - \left(2 - {1 \over 2}\sqrt{2} \right) \\ & = {1 \over 2}\sqrt{2} \\ \\ \therefore & \phantom{0} \left(2 - {1 \over 2}\sqrt{2}, {1 \over 2}\sqrt{2} \right) \end{align}
\begin{align} y & = mx + c \\ y & = x + c \phantom{00000} [\text{Tangent has gradient } 1] \\ \\ \text{Using } & \left(2 + {1 \over 2}\sqrt{2}, -{1 \over 2}\sqrt{2} \right), \\ -{1 \over 2}\sqrt{2} & = 2 + {1 \over 2}\sqrt{2} + c \\ - 2 - \sqrt{2} & = c \\ \\ \therefore y & = x -2 - \sqrt{2} \\ \\ \\ \text{Using } & \left(2 - {1 \over 2}\sqrt{2}, {1 \over 2}\sqrt{2} \right), \\ {1 \over 2}\sqrt{2} & = 2 - {1 \over 2}\sqrt{2} + c \\ - 2 + \sqrt{2} & = c \\ \\ \therefore y & = x - 2 + \sqrt{2} \end{align}
The perpendicular bisectors of chords $PR$ and $PQ$ passes through the centre of the circle (Circle property from E Maths) \begin{align} \text{Mid-point of } PQ & = \left({13 + 27 \over 2}, {0 + 0 \over 2} \right) \\ & = (20, 0) \\ \\ \therefore x\text{-coordinate of centre} & = 20 \\ \\ \text{Gradient of } PR & = {0 - 9 \over 13 - 0} \\ & = -{9 \over 13} \\ \\ \text{Gradient of perp. bisector} \times -{9 \over 13} & = -1 \\ \text{Gradient of perp. bisector} & = {-1 \over -{9 \over 13}} \\ & = {13 \over 9} \\ \\ \text{Mid-point of } PR & = \left({13 + 0 \over 2}, {0 + 9 \over 2} \right) \\ & = \left({13 \over 2}, {9 \over 2} \right) \\ \\ y & = mx + c \\ y & = {13 \over 9}x + c \\ \\ \text{Using } & \left({13 \over 2}, {9 \over 2} \right), \\ {9 \over 2} & = {13 \over 9}\left(13 \over 2\right) + c \\ {9 \over 2} & = {169 \over 18} + c \\ -{44 \over 9} & = c \\ \\ \text{Eqn of perp. bisector of } PR: \phantom{00} y & = {13 \over 9}x - {44 \over 9} \\ \\ \text{When } & x = 20, \\ y & = {13 \over 9}(20) - {44 \over 9} \\ & = 24 \\ \\ \therefore \text{Centre: } & (20, 24) \\ \\ \text{Radius} & = \text{Distance between } P \text{ and centre} \\ & = \sqrt{ (13 - 20)^2 + (0 - 24)^2 } \\ & = 25 \text{ units} \\ \\ \\ (x - 20)^2 & + (y - 24)^2 = 25^2 \\ \text{Eqn of circle: } (x - 20)^2 & + (y - 24)^2 = 625 \end{align}
(i)
\begin{align} x^2 + y^2 - 6x - 2y - 15 & = 0 \\ x^2 + y^2 + 2(-3)(x) + (2)(-1)(y) - 15 & = 0 \\ \\ \text{Comparing with } x^2 + y^2 & + 2gx + 2fy + c = 0, \\ g & = -3 \\ f & = -1 \\ c & = - 15 \\ \\ \therefore \text{ Centre } & (3, 1) \end{align}
(ii) The perpendicular bisector of chord AB passes through the centre of the circle (Circle property from E Maths)
\begin{align} \text{Let centre } & (3, 1) \text{ be } F. \\ \\ \text{Gradient of } MF & = {3 - 1 \over 2 - 3} \\ & = -2 \\ \\ \text{Gradient of } AB \times -2 & = -1 \\ \text{Gradient of } AB & = {-1 \over -2} \\ & = {1 \over 2} \\ \\ y & = mx + c \\ y & = {1 \over 2}x + c \\ \\ \text{Using } & M(2, 3), \\ 3 & = {1 \over 2}(2) + c \\ 3 & = 1 + c \\ 2 & = c \\ \\ \text{Eqn of } AB: & \phantom{(} y = {1 \over 2}x + 2 \\ & 2y = x + 4 \end{align}
(iii) Since CD is parallel to AB, both lines have the same gradient. In addition, since CD is the diameter of the circle, it passes through the centre of the circle (3, 1).
\begin{align} y & = mx + c \\ y & = {1 \over 2}x + c \\ \\ \text{Using } & \text{centre (3, 1),} \\ 1 & = {1 \over 2}(3) + c \\ 1 & = {3 \over 2} + c \\ -{1 \over 2} & = c \\ \\ \text{Eqn of } CD: \phantom{0} y & = {1 \over 2}x - {1 \over 2} \phantom{000} \text{ --- (1)} \\ \\ \text{Eqn of circle: } \phantom{0} x^2 + y^2 & - 6x - 2y - 15 = 0 \phantom{000} \text{ --- (2)} \\ \\ \text{Substitute } & \text{(1) into (2),} \\ x^2 + \left({1 \over 2}x - {1 \over 2}\right)^2 - 6x - 2\left({1 \over 2}x - {1 \over 2}\right) - 15 & = 0 \\ x^2 + \left({1 \over 2}x\right)^2 - 2\left({1 \over 2}x\right)\left({1 \over 2}\right) + \left(1 \over 2\right)^2 - 6x - x + 1 - 15 & = 0 \\ x^2 + {1 \over 4}x^2 - {1 \over 2}x + {1 \over 4} - 7x - 14 & = 0 \\ {5 \over 4}x^2 - {15 \over 2}x - {55 \over 4} & = 0 \\ 5x^2 - 30x - 55 & = 0 \\ x^2 - 6x - 11 & = 0 \\ \\ x & = {-b \pm \sqrt{ b^2 - 4ac} \over 2a} \\ & = {- (-6) \pm \sqrt{ (-6)^2 - 4(1)(-11) } \over 2(1) } \\ & = {6 \pm \sqrt{ 80 } \over 2} \\ & = {6 \pm \sqrt{16}\sqrt{5} \over 2} \\ & = {6 \pm 4 \sqrt{5} \over 2} \\ & = 3 \pm 2\sqrt{5} \\ \\ \text{Substitute } & x = 3 + 2\sqrt{5} \text{ into (1),} \\ y & = {1 \over 2} (3 + 2\sqrt{5}) - {1 \over 2} \\ & = {3 \over 2} + \sqrt{5} - {1 \over 2} \\ & = 1 + \sqrt{5} \\ \\ \therefore & \phantom{0} (3 + 2\sqrt{5}, 1 + \sqrt{5}) \\ \\ \text{Substitute } & x = 3 - 2\sqrt{5} \text{ into (1),} \\ y & = {1 \over 2} (3 - 2\sqrt{5}) - {1 \over 2} \\ & = {3 \over 2} - \sqrt{5} - {1 \over 2} \\ & = 1 - \sqrt{5} \\ \\ \therefore & \phantom{0} (3 - 2\sqrt{5}, 1 - \sqrt{5}) \end{align}
(i)
\begin{align} x^2 + y^2 - 4x - 2y + 1 & = 0 \phantom{000} \text{ --- (1)} \\ \\ kx - y & = k + 1 \\ - y & = - kx + k + 1 \\ y & = kx - k - 1 \phantom{000} \text{ --- (2)} \end{align} \begin{align} \text{Substitute } & \text{(2) into (1),} \\ x^2 + (kx - k - 1)^2 - 4x - 2(kx - k - 1) + 1 & = 0 \\ x^2 + (kx - k - 1)(kx - k - 1) - 4x - 2kx + 2k + 2 + 1 & = 0 \\ x^2 + k^2x^2 - k^2x - kx - k^2x + k^2 + k - kx + k + 1 - 4x - 2kx + 2k + 3 & = 0 \\ x^2 + k^2x^2 - 2k^2x - 4kx - 4x + k^2 + 4k + 4 & = 0 \\ (1 + k^2)x^2 + (-2k^2 -4k - 4)x + (k^2 + 4k + 4) & = 0 \end{align} \begin{align} b^2 - 4ac & = (-2k^2 - 4k - 4)^2 - 4(1 + k^2)(k^2 + 4k + 4) \\ & = (-2k^2 - 4k - 4)(-2k^2 - 4k - 4) - 4(k^2 + 4k + 4 + k^4 + 4k^3 + 4k^2) \\ & = 4k^4 + 8k^3 + 8k^2 + 8k^3 + 16k^2 + 16k + 8k^2 + 16k + 16 - 4(k^4 + 4k^3 + 5k^2 + 4k + 4) \\ & = 4k^4 + 16k^3 + 32k^2 + 32k + 16 - 4k^4 - 16k^3 - 20k^2 - 16k - 16 \\ & = 12k^2 + 16k \\ & = 4k(3k + 4) \\ \\ b^2 - 4ac & > 0 \phantom{00000} [\text{2 distinct points}] \\ 4k(3k + 4) & > 0 \\ k(3k + 4) & > 0 \end{align}
$$ k < -{4 \over 3} \phantom{0} \text{ or } \phantom{0} k > 0 $$
(ii)
\begin{align} b^2 - 4ac & = 0 \phantom{00000} [\text{1 point}] \\ 4k(3k + 4) & = 0 \\ k(3k + 4) & = 0 \\ \\ k = 0 \phantom{00}&\text{or}\phantom{00} 3k + 4 = 0 \\ & \phantom{or00+4} 3k = - 4 \\ & \phantom{or00+43} k = -{4 \over 3} \end{align}
(iii)
\begin{align} b^2 - 4ac & < 0 \phantom{00000} [\text{no points of intersection}] \\ 4k(3k + 4) & < 0 \\ k(3k + 4) & < 0 \end{align}
$$ -{4 \over 3} < k < 0 $$