H2 Maths Formulas, Techniques & Graphs >> Functions and Graphs >> Graphs >> Conics >>

Hyperbola

Type 1

 
General.png
 

$$ \boxed{ \text{General formula: } {(x - h)^2 \over a^2} - {(y - k)^2 \over b^2} = 1 } $$

Features:

  • Centre $(h, k)$
  • Vertices $(h - a, k)$, $(h + a, k)$
  • Two oblique asymptotes, $y = \pm{b \over a}(x - h) + k$
  • $x$-values restricted to $x \le h - a$ or $x \ge h + a$

Example

 
Ex.png
 

$$ {(x - 1)^2 \over 2^2} - {y^2 \over 1^2} = 1 $$

Features:

  • Centre $(1, 0)$
  • Vertices $(-1, 0)$, $(3, 0)$
  • Two oblique asymptotes, $y = \pm {1 \over 2}(x - 1)$
  • $x$-values restricted to $x \le -1$ or $x \ge 3$
 

Type 2

 
General.png
 

$$ \boxed{ \text{General formula: } {(y - k)^2 \over b^2} - {(x - h)^2 \over a^2} = 1 } $$

Features:

  • Centre $(h, k)$
  • Vertices $(h, k - b)$, $(h, k + b)$
  • Two oblique asymptotes, $y = \pm{b \over a}(x - h) + k$
  • $y$-values restricted to $y \le k - b$ or $y \ge k + b$

Example

 
Ex.png
 

$$ {(y - 2)^2 \over 2^2} - {(x + 1)^2 \over 1^2} = 1 $$

Features:

  • Centre $(-1, 2)$
  • Vertices $(-1, 4)$ and $(-1, 0)$
  • Two oblique asymptotes, $y = 2x + 4$ and $y = -2x$
  • $y$-values restricted to $y \le 0$ or $y \ge 4$
 

Hyperbola in Conics app (TI-84 Plus CE)

$$ {x^2 \over 2^2} - (y - 1)^2 = 1 $$

To plot the hyperbola above in the Conics app:

  1. Enter the Conics app ('apps' - 'Conics')
  2. Select '3: Hyperbola'
  3. Select the first hyperbola and enter the corresponding values:
Entry mode

Entry mode

Press ‘graph’ to obtain the sketch:

Conics - graph.png

To obtain information about the features of the hyperbola, go back to entry mode (press ‘y=’) and press ‘2nd’ followed by ‘enter’:

Vertex is another name for verticesSlope refers to the gradient of the oblique asymptotes
 

'Top' & 'Bottom' Half, 'Left' & 'Right' Half

$$ {(y - 2)^2 \over 2^2} - (x + 1)^2 = 1 $$

To obtain the equation for the 'top' half and 'bottom' half, make $y$ the subject:

\begin{align} { (y - 2)^2 \over 2^2} - (x + 1)^2 & = 1 \\ { (y - 2)^2 \over 4} & = 1 + (x + 1)^2 \\ (y - 2)^2 & = 4 + 4(x + 1)^2 \\ y - 2 & = \pm \sqrt{4 + 4(x + 1)^2} \\ y & = \pm \sqrt{4 + 4(x + 1)^2} + 2 \end{align}

Ex [T, D].png
 

$$ {(y - 2)^2 \over 2^2} - (x + 1)^2 = 1 $$

On the other hand, to obtain the equation for the 'left' half and 'right' half, make $x$ the subject of the equation:

\begin{align} { (y - 2)^2 \over 2^2} - (x + 1)^2 & = 1 \\ { (y - 2)^2 \over 4} - (x + 1)^2 & = 1 \\ -(x + 1)^2 & = 1 - { (y - 2)^2 \over 4} \\ (x + 1)^2 & = { (y - 2)^2 \over 4} - 1 \\ x + 1 & = \pm \sqrt{ { (y - 2)^2 \over 4} - 1} \\ x & = \pm \sqrt{ { (y - 2)^2 \over 4} - 1} - 1 \\ x & = \pm \sqrt{ {1 \over 4}(y - 2)^2 - 1} - 1 \end{align}

Ex [L, R].png