H2 Maths Formulas, Techniques & Graphs >> Calculus >> Integration techniques >>

Integrate Different Forms of Algebraic Fractions

Fractions in the form ${1 \over x^2 + a^2}$, ${1 \over \sqrt{a^2 - x^2} }$, ${1 \over x^2 - a^2}$, ${1 \over a^2 - x^2}$

$$f(x)$$ $$\int f(x) \phantom{.} dx $$ Remarks
$$ {1 \over x^2 + a^2} $$ $$ {1 \over a} \tan^{-1} \left(x \over a\right) $$ On page 4 of MF26
$$ {1 \over \sqrt{a^2 - x^2}} $$ $$ \sin^{-1} \left(x \over a\right) $$ On page 4 of MF26
$$ {1 \over x^2 - a^2} $$ $$ {1 \over 2a} \ln \left(x - a \over x + a\right) $$ On page 4 of MF26
$$ {1 \over a^2 - x^2} $$ $$ {1 \over 2a} \ln \left(a + x \over a - x\right) $$ On page 4 of MF26

To use the formulas directly, make sure the coefficient of $x^2$ is equals to 1. For example, \begin{align} \int {1 \over \sqrt{3 - 25x^2} } \phantom{.} dx & = \int { 1 \over \sqrt{25} \sqrt{ {3 \over 25} - x^2 } } \phantom{.} dx \\ & = {1 \over 5} \int { 1 \over \sqrt{ \left(\sqrt{3} \over 5\right)^2 - x^2 } } \phantom{.} dx \\ & = {1 \over 5} \sin^{-1} \left( x \over {\sqrt{3} \over 5} \right) \\ & = {1 \over 5} \sin^{-1} \left(5x \over \sqrt{3} \right) + C \end{align}

 

Fractions in the form ${1 \over \sqrt{ax^2 + bx+ c} }$

For this type of fraction, complete the square for the expression in the denominator and use the appropriate formula from MF26 (see previous section).

Example

$$ \int {1 \over \sqrt{2 - t^2 + 2t}} \phantom{.} dt $$

Complete the square for the expression in the denominator (without the square root): \begin{align} 2 - t^2 + 2t & = -t^2 + 2t + 2 \\ & = -(t^2 - 2t) + 2 \\ & = -[ (t - 1)^2 - (1)^2 ] + 2 \\ & = -(t - 1)^2 + 1 + 2 \\ & = -(t - 1)^2 + 3 \\ & = 3 - (t - 1)^2 \end{align}

Apply the result and use the appropriate formula from MF26: \begin{align} \int {1 \over \sqrt{2 - t^2 + 2t} } \phantom{.} dt & = \int {1 \over \sqrt{ 3 - (t - 1)^2} } \phantom{.} dt \\ & = \int {1 \over \sqrt{ (\sqrt{3})^2 - (t - 1)^2 } } \phantom{.} dt \\ & = \sin^{-1} \left( t - 1 \over \sqrt{3} \right) + C \end{align}

 

Fractions in the form ${1 \over ax^2 + bx+ c}$

There are two approaches for this type of fraction:

  1. If the denominator is factorisable, do partial fractions

  2. If the denominator is not factorisable, complete the square for the expression in the denominator and use the appropriate formula from MF26

Approach 1: Partial fractions

$$ \int {1 \over x^2 - 3x + 2} \phantom{.} dx $$

Since the denominator is factorisable, solve partial fraction (refer to page 2 of MF26 for the formulas): \begin{align} {1 \over x^2 - 3x + 2} & = {1 \over (x - 1)(x - 2)} \\ & = {A \over x - 1} + {B \over x - 2} \\ & = {A (x - 2) + B (x - 1) \over (x - 1)(x - 2)} \\ \\ 1 & = A(x - 2) + B(x - 1) \\ \\ \text{Let } & x = 2, \\ 1 & = B \\ \\ \text{Let } & x = 1, \\ 1 & = -A \\ -1 & = A \\ \\ {1 \over x^2 - 3x + 2} & = {-1 \over x - 1} + {1 \over x - 2} \end{align}

Now integrate: \begin{align} \int {1 \over x^2 - 3x + 2} \phantom{.} dx & = \int \left( {-1 \over x - 1} + {1 \over x - 2} \right) \phantom{.} dx \\ & = - \int {1 \over x - 1} \phantom{.} dx + \int {1 \over x - 2} \phantom{.} dx \\ & = - \ln |x - 1| + \ln |x - 2| + C \end{align}

Approach 2: Complete the square

$$ \int {1 \over x^2 - 3x + 5} \phantom{.} dx $$

Since the denominator is not factorisable, complete the square for the expression in the denominator: \begin{align} x^2 - 3x + 5 & = \left(x - {3 \over 2}\right)^2 - \left(3 \over 2\right)^2 + 5 \\ & = \left(x - {3 \over 2}\right)^2 + {11 \over 4} \end{align}

Now integrate, using the result and the appropriate formula from MF26: \begin{align} \int {1 \over x^2 - 3x + 5} \phantom{.} dx & = \int {1 \over \left(x - {3 \over 2}\right)^2 + {11 \over 4} } \phantom{.} dx \\ & = \int {1 \over \left(x - {3 \over 2}\right)^2 + \left( \sqrt{11} \over 2\right)^2 } \phantom{.} dx \\ & = {1 \over {\sqrt{11} \over 2} } \tan^{-1} \left(x - {3 \over 2} \over {\sqrt{11} \over 2} \right) \\ & = {2 \over \sqrt{11} } \tan^{-1} \left(2x - 3 \over \sqrt{11} \right) + C \end{align}

 

Proper fractions in the form ${f(x) \over g(x)}$

The formulas below can be used:

For $n \ne -1$, $$ \boxed{ \int f'(x) [f(x)]^n \phantom{.} dx = { [f(x)]^{n + 1} \over n + 1} + C } $$

For $n = -1$, $$ \boxed{ \int f'(x) [f(x)]^{-1} \phantom{.} dx = \int {f'(x) \over f(x)} \phantom{.} dx = \ln \left| f(x) \right| + C } $$

Example 1

\begin{align} \int {x - 1 \over x^2 - 2x - 7} \phantom{.} dx & = {1 \over 2} \int {2x - 2 \over x^2 - 2x - 7} \phantom{.} dx \\ & = {1 \over 2} \ln |x^2 - 2x - 7| + C \end{align}

Example 2

$$ \int { 2x \over \sqrt{5 - 4x - x^2} } \phantom{.} dx $$

Since $f(x) = 5 - 4x - x^2$ and $f'(x) = -4 - 2x$, manipulate the expression to obtain ${f'(x) \over f(x)}$: \begin{align} \int { 2x \over \sqrt{5 - 4x - x^2} } \phantom{.} dx & = - \int {-2x \over \sqrt{5 - 4x - x^2} } \phantom{.} dx \\ & = - \int \left( {- 2x - 4 \over \sqrt{5 - 4x - x^2} } + {4 \over \sqrt{5 - 4x - x^2} } \right) \phantom{.} dx \\ & = - \int {-2x - 4 \over \sqrt{5 - 4x - x^2} } \phantom{.} dx - \int {4 \over \sqrt{5 - 4x - x^2} } \phantom{.} dx \\ & = - \int (-2x - 4) (5 - 4x - x^2)^{-{1 \over 2}} \phantom{.} dx - 4 \int {1 \over \sqrt{5 - 4x - x^2} } \phantom{.} dx \end{align}

The first term is in the form of ${f'(x) \over f(x)}$. The second term can integrated by

  1. Complete the square for expression in denominator
  2. Use the relevant formula from MF26

\begin{align} 5 - 4x - x^2 & = -x^2 - 4x + 5 \\ & = -(x^2 + 4x) + 5 \\ & = - [ (x + 2)^2 - (2)^2 ] + 5 \\ & = -(x + 2)^2 + 4 + 5 \\ & = -(x + 2)^2 + 9 \\ & = 9 - (x + 2)^2 \\ & = 3^2 - (x + 2)^2 \\ \\ \int (-2x - 4) (5 - 4x - x^2)^{-{1 \over 2}} \phantom{.} dx - 4 \int {1 \over \sqrt{5 - 4x - x^2} } \phantom{.} dx & = - \left[ (5 - 4x - x^2)^{1 \over 2} \over {1 \over 2} \right] - 4 \int {1 \over \sqrt{3^2 - (x + 2)^2}} \phantom{.} dx \\ & = -2 \sqrt{5 - 4x - x^2} - 4 \sin^{-1} \left( x + 2 \over 3\right) + C \end{align}

 

Improper fractions in the form ${f(x) \over g(x)}$

Express the improper fraction as a proper fraction, then follow the same strategy as the previous section.

Example

\begin{align} \int {2x^2 \over x^2 + 3x + 5} \phantom{.} dx & = \int 2 + {-6x - 10 \over x^2 + 3x + 5} \phantom{.} dx \\ & = \int 2 \phantom{.} dx - \int {6x + 10 \over x^2 + 3x + 5} \phantom{.} dx \end{align}

For the proper fraction, $f(x) = x^2 + 3x + 5$ and $f'(x) = 2x + 3$: \begin{align} \phantom{\int {2x^2 \over x^2 + 3x + 5} . dx } & = 2x - \int \left( {6x + 9 \over x^2 + 3x + 5} + {1 \over x^2 + 3x + 5} \right) \phantom{.} dx \\ & = 2x - \int {6x + 9 \over x^2 + 3x + 5} \phantom{.} dx - \int {1 \over x^2 + 3x + 5} \phantom{.} dx \\ & = 2x - 3\int {2x + 3 \over x^2 + 3x + 5} \phantom{.} dx - \int {1 \over\left(x + {3 \over 2}\right)^2 - \left(3 \over 2\right)^2 + 5} \phantom{.} dx \\ & = 2x - 3\int {2x + 3 \over x^2 + 3x + 5} \phantom{.} dx - \int {1 \over \left(x + {3 \over 2}\right)^2 + {11 \over 4} } \phantom{.} dx \\ & = 2x - 3\int {2x + 3 \over x^2 + 3x + 5} \phantom{.} dx - \int {1 \over \left(x + {3 \over 2}\right)^2 + \left(\sqrt{11} \over 2\right)^2 } \phantom{.} dx \end{align}

The second term is in the form ${f'(x) \over f(x)}$ and the third term can be integrated by one of the formulas in MF26: \begin{align} \phantom{\int {2x^2 \over x^2 + 3x + 5} . dx } & = 2x - 3 \ln (x^2 + 3x + 5) - {1 \over {\sqrt{11} \over 2}} \tan^{-1} \left(x + {3 \over 2} \over {\sqrt{11} \over 2} \right) \\ & = 2x - 3 \ln (x^2 + 3x + 5) - {2 \over \sqrt{11}} \tan^{-1} \left(2x + 3 \over \sqrt{11}\right) + C \end{align}

Note $x^2 + 3x + 5 = \left(x + {3 \over 2}\right)^2 + \left(\sqrt{11} \over 2\right)^2 $ is always positive for all real values of $x$.