H2 Maths Formulas, Techniques & Graphs >> Functions and Graphs >> Graphs >>
Rational functions in the form $ y = {P(x) \over D(x)}$
Improper rational functions
$$ y = {P(x) \over D(x)} $$
In a proper rational function, the degree of P(x) is less than the degree of D(x).
In an improper rational function, the degree of P(x) is more than or equals to the degree of D(x). The following function is an improper fraction:
$$ y = {2x \over 2x - 1} $$
To express it as a proper function, perform long division and express the result by the division algorithm:
\begin{align} {\text{Polynomial} \over \text{Divisor}} & = \text{Quotient} + {\text{Remainder} \over \text{Divisor}} \\ \\ y & = {2x \over 2x - 1} \\ & = 1 + {1 \over 2x - 1} \end{align}
Rational function 1: $y = {a \over x + b}$
$$ y = {a \over x + b} $$
In this form, the features of the graph are:
- Horizontal asymptote: $y = 0$
- Vertical asymptote: $x = - b$
- Stationary point(s) may not exist - let ${dy \over dx} = 0$ and (try to) solve for coordinates of stationary points
Example
Consider the graph of $y = {1 \over x + 2}$:
\begin{align} y & = {1 \over x + 2} \\ \\ \text{Horizontal asymptote: } & y = 0 \\ \text{Vertical asymptote: } & x = -2 \\ \\ \text{Let } & x = 0, \\ y & = {1 \over 0 + 2} \\ y & = 0.5 \\ \implies y-\text{int} & \text{ercept is } 0.5 \\ \\ \text{No } x \text{ -intercepts } & \text{since } y = 0 \text{ is the asymptote} \\ \\ y & = {1 \over x + 2} = (x + 2)^{-1} \\ \\ {dy \over dx} & = (-1)(x + 2)^{-2} (1) \phantom{000} [\text{Chain rule}] \\ & = -{1 \over (x + 2)^2} \\ \\ \text{For all real va} \text{lues of } & x \text{ (excluding } x = -2), \\ (x + 2)^2 & > 0 \\ \implies -{1 \over (x + 2)^2 } & < 0 \\ {dy \over dx} & < 0 \\ \\ \therefore \text{No stationary} & \text{ points (since } {dy \over dx} \ne 0 \text{ for any values of } x) \end{align}
Rational function 2: $y = p + {a \over x + b}$
$$ y = p + {a \over x + b} $$
In this form, the features of the graph are:
- Horizontal asymptote: $y = p$
- Vertical asymptote: $x = - b$
- Stationary point(s) may not exist - let ${dy \over dx} = 0$ and (try to) solve for coordinates of stationary points
Example
Consider the graph of $y = 1 + {1 \over 2x - 1}$:
\begin{align} \text{Horizontal asymptote: } & y = 1 \\ \text{Vertical asymptote: } & x = 0.5 \\ \\ \text{Let } & x = 0, \\ y & = 1 + {1 \over 2(0) - 1} \\ y & = 0 \\ \implies x/y-\text{int} & \text{ercept is } 0 \\ \\ y & = 1 + {1 \over 2x - 1} = 1 + (2x - 1)^{-1} \\ \\ {dy \over dx} & = 0 + (-1)(2x - 1)^{-2} (2) \\ & = -{2 \over (2x - 1)^2} \\ \\ \text{For all real va} \text{lues of } & x \text{ (excluding } x = 0.5), \\ (2x - 1)^2 & > 0 \\ \implies -{2 \over (2x - 1)^2 } & < 0 \\ {dy \over dx} & < 0 \\ \\ \therefore \text{No stationary} & \text{ points (since } {dy \over dx} \ne 0 \text{ for any values of } x) \end{align}
Rational function 3: $y = px + q + {a \over x + b}$
$$ y = px + q + {a \over x + b} $$
In this form, the features of the graph are:
- Oblique asymptote: $y = px + q$
- Vertical asymptote: $x = - b$
- Stationary point(s) may not exist - let ${dy \over dx} = 0$ and (try to) solve for coordinates of stationary points
Example
Consider the graph of $y = -x + 1 - {1 \over x - 1}$:
\begin{align} y & = -x + 1 - {1 \over x - 1} \\ \\ \text{Oblique asymptote: } & y = -x + 1 \\ \text{Vertical asymptote: } & x = 1 \\ \\ \text{Let } & x = 0, \\ y & = -(0) + 1 - {1 \over 0 - 1} \\ y & = 2 \\ \implies y-\text{int} & \text{ercept is } 2 \\ \\ y & = -x + 1 - {1 \over x - 1} \\ & = -x + 1 - (x - 1)^{-1} \\ \\ {dy \over dx} & = -1 + 0 - (-1)(x - 1)^{-2} (1) \\ & = - 1 + {1 \over (x - 1)^2} \\ \\ \text{Let } & {dy \over dx} = 0, \\ 0 & = -1 + {1 \over (x - 1)^2} \\ 1 & = {1 \over (x - 1)^2} \\ (x - 1)^2 & = 1 \\ x - 1 & = \pm \sqrt{1} \\ x - 1 & = \pm 1 \\ x & = 1 + 1 \text{ or } - 1 + 1 \\ x & = 2 \text{ or } 0 \\ \\ \implies (0, 2) & \text{ is a stationary point} \\ \\ \text{When } & x = 2, \\ y & = -(2) + 1 - {1 \over 2 - 1} \\ y & = -2 \\ \implies (2, -2) & \text{ is a stationary point} \end{align}