New Discovering Mathematics 3A Textbook solutions
Ex 1.3
Please email me if you spot any mistakes or have any questions.
Solutions
Click to display or to hide
(a)
x | -1 | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|---|
y | 9 | 4 | 1 | 0 | 1 | 4 | 9 |
(b)
(c) Look for the x-intercept of the graph
$$ \text{From graph, } x = 2 $$
(a)
x | -1 | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|---|
y | -4 | 0 | 2 | 2 | 0 | -4 | -10 |
(b)
(c) Look for the x-intercepts of the graph
$$ \text{From graph, } x = 0, 3 $$
(a)
x | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|---|---|
y | 10 | 5 | 2 | 1 | 2 | 5 | 10 |
(b)
(c) The graph does not meet the x-axis at all!
$$ \text{From graph, there are no solutions} $$
(a)
\begin{align} x^2 & = x + 6 \\ \underbrace{x^2 - x - 6}_\text{Curve} & = 0 \\ \\ \text{From graph, } & x = -2, 3 \phantom{000000} [\text{Look for } x \text{-intercepts}] \end{align}
(b)(i)
\begin{align} x^2 - x - 5 & = 0 \\ x^2 - x - 5 - 1 & = -1 \\ \underbrace{x^2 - x - 6}_\text{Curve} & = -1 \\ \\ \text{Draw } & y = -1 \end{align}
$$ \text{From graph, } x = -1.8, 2.8 $$
(b)(ii)
\begin{align} x^2 - 2x + 1 & = 0 \\ x^2 - 2x + x + 1 & = 0 + x \\ x^2 - x + 1 & = x \\ x^2 - x + 1 - 7 & = x - 7 \\ \underbrace{x^2 - x - 6}_\text{Curve} & = x - 7 \\ \\ \text{Draw } & y = x - 7 \end{align}
x | 0 | 2 | 4 |
---|---|---|---|
y | -7 | -5 | -3 |
$$ \text{From graph, } x = 1 $$
(a)
x | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|---|---|
y | 5 | 0 | -3 | -4 | -3 | 0 | 5 |
(b)
\begin{align} x^2 & = 2x + 3 \\ \underbrace{x^2 - 2x - 3}_\text{Curve} & = 0 \\ \\ \text{From graph, } & x = -1, 3 \phantom{000000} [\text{Look for } x \text{-intercepts}] \end{align}
(c)(i)
\begin{align} x^2 - 2x & = 6 \\ x^2 - 2x - 3 & = 6 - 3 \\ \underbrace{x^2 - 2x - 3}_\text{Curve} & = 3 \\ \\ \text{Draw } & y = 3 \\ \\ \text{From graph, } & x = -1.65, 3.65 \end{align}
(c)(ii)
\begin{align} x^2 - x - 3 & = 0 \\ x^2 - x - 3 - x & = -x \\ \underbrace{x^2 - 2x - 3}_\text{Curve} & = -x \\ \\ \text{Draw } & y = -x \end{align}
x | 0 | 1 | 2 |
---|---|---|---|
y | 0 | -1 | -2 |
$$ \text{From graph, } x = -1.3, 2.3 $$
(a)
x | -4 | -3 | -2 | -1 | 0 | 1 | 2 |
---|---|---|---|---|---|---|---|
y | 11 | 2 | -3 | -4 | -1 | 6 | 17 |
(b)
\begin{align} 2x^2 + 5x & = 1 \\ \underbrace{2x^2 + 5x - 1}_\text{Curve} & = 0 \\ \\ \text{From graph, } & x = -2.7, 0.2 \phantom{000000} [\text{Look for } x \text{-intercepts}] \end{align}
(c)(i)
\begin{align} 2x^2 + 5x - 5 & = 0 \\ 2x^2 + 5x - 5 + 4 & = 0 + 4 \\ \underbrace{2x^2 + 5x - 1}_\text{Curve} & = 4 \\ \\ \text{Draw } & y = 4 \\ \\ \text{From graph, } & x = -3.25, 0.75 \end{align}
(c)(ii)
\begin{align} 2x^2 + x - 6 & = 0 \\ 2x^2 + x - 6 + 4x & = 0 + 4x \\ 2x^2 + 5x - 6 & = 4x \\ 2x^2 + 5x - 6 + 5 & = 4x + 5 \\ \underbrace{2x^2 + 5x - 1}_\text{Curve} & = 4x + 5 \\ \\ \text{Draw } & y = 4x + 5 \end{align}
x | -1 | 0 | 1 | 2 |
---|---|---|---|---|
y | 1 | 5 | 9 |
$$ \text{From graph, } x = -2, 1.5 $$
(a)
x | -2 | -1 | 0 | 1 | 2 | 3 |
---|---|---|---|---|---|---|
y | 20 | 9 | 4 | 5 | 12 | 25 |
(b)
\begin{align} 3x^2 & = 2x - 4 \\ \underbrace{3x^2 - 2x + 4}_\text{Curve} & = 0 \\ \\ \text{From graph, no solutions} & \text{ since there are no } x \text{-intecept(s)} \end{align}
(c)(i)
\begin{align} 3x^2 - 2x - 10 & = 0 \\ 3x^2 - 2x - 10 + 14 & = 0 + 14 \\ \underbrace{3x^2 - 2x + 4}_\text{Curve} & = 14 \\ \\ \text{Draw } & y = 14 \\ \\ \text{From graph, } & x = -1.5, 2.2 \end{align}
(c)(ii)
\begin{align} 3x^2 - 5 & = 0 \\ 3x^2 - 5 - 2x & = 0 - 2x \\ 3x^2 - 2x - 5 & = -2x \\ 3x^2 - 2x - 5 + 9 & = -2x + 9 \\ \underbrace{3x^2 - 2x + 4}_\text{Curve} & = -2x + 9 \\ \\ \text{Draw } & y = - 2x + 9 \end{align}
x | 0 | 1 | 2 |
---|---|---|---|
y | 9 | 7 | 5 |
$$ \text{From graph, } x = -1.3, 1.3 $$
(a)
x | -4 | -3 | -2 | -1 | 0 | 1 | 2 |
---|---|---|---|---|---|---|---|
y | -2 | 3 | 6 | 7 | 6 | 3 | -2 |
(b)
\begin{align} x^2 + 2x - 6 & = 0 \\ 0 & = \underbrace{6 - 2x - x^2}_\text{Curve} \\ \\ \text{From graph, } & x = -3.65, 1.65 \phantom{000000} [\text{Look for } x \text{-intercepts}] \end{align}
(c)(i)
\begin{align} x^2 + 2x - 2 & = 0 \\ 0 & = 2 - 2x - x^2 \\ 0 + 4 & = 2 - 2x - x^2 + 4 \\ 4 & = \underbrace{6 - 2x - x^2}_\text{Curve} \\ \\ \text{Draw } & y = 4 \\ \\ \text{From graph, } & x = -2.75, 0.75 \end{align}
(c)(ii)
\begin{align} 3 - x - x^2 & = 0 \\ 3 - x - x^2 + 3 & = 0 + 3 \\ 6 - x - x^2 & = 3 \\ 6 - x - x^2 - x & = 3 - x \\ \underbrace{6 - 2x - x^2}_\text{Curve} & = 3 - x \\ \\ \text{Draw } & y = 3 - x \end{align}
x | 0 | 1 | 2 |
---|---|---|---|
y | 3 | 2 | 1 |
$$ \text{From graph, } x = -2.3, 1.3 $$
(a)
x | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|---|---|
y | -22 | -7 | 2 | 5 | 2 | -7 | -22 |
(b)(i)
\begin{align} 3x^2 - 6x - 2 & = 0 \\ 0 & = \underbrace{-3x^2 + 6x + 2}_\text{Curve} \\ \\ \text{From graph, } & x = -0.3, 2.3 \phantom{000000} [\text{Look for } x \text{-intercepts}] \end{align}
(b)(ii)
\begin{align} 7 + 6x - 3x^2 & = 0 \\ - 3x^2 + 6x + 7 & = 0 \\ - 3x^2 + 6x + 7 - 5 & = 0 - 5 \\ \underbrace{ -3x^2 + 6x + 2 }_\text{Curve} & = - 5 \\ \\ \text{Draw } & y = -5 \\ \\ \text{From graph, } & x = -0.8, 2.8 \end{align}
(c)(i)
\begin{align} 5x - y & = 4 \\ -y & = 4 - 5x \\ y & = -4 + 5x \end{align}
x | 0 | 1 | 2 |
---|---|---|---|
y | -4 | 1 | 6 |
$$ \text{From graph, } x = -1.25, 1.6$$
(c)(ii)
\begin{align} y & = -4 + 5x \phantom{00} \text{--- (1)} \\ \\ y & = - 3x^2 + 6x + 2 \phantom{00} \text{--- (2)} \\ \\ \text{Substitute } & \text{(1) into (2),} \\ -4 + 5x & = -3x^2 + 6x + 2 \\ 0 & = -3x^2 + 6x - 5x + 2 + 4 \\ 0 & = -3x^2 + x + 6 \\ \\ \therefore b & = 1, c = 6 \end{align}
(a)
x | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 |
---|---|---|---|---|---|---|---|---|---|
y | 6 | 2.5 | 0 | -1.5 | -2 | -1.5 | 0 | 2.5 | 6 |
(b)
\begin{align} {1 \over 2}x^2 + 2x + 1 & = 0 \\ \underbrace{ {1 \over 2}x^2 + 2x }_\text{Curve} & = -1 \\ \\ \text{Draw } & y = - 1 \\ \\ \text{From graph, } & x = -3.4, -0.6 \end{align}
(c)(i)
\begin{align} x + 2y & = 4 \\ 2y & = 4 - x \\ y & = {1 \over 2}(4 - x) \\ y & = 2 - {1 \over 2}x \end{align}
x | 0 | 1 | 2 |
---|---|---|---|
y | 2 | 1.5 | 1 |
$$ \text{From graph, } x = -5.7, 0.7 $$
(c)(ii)
\begin{align} y & = {1 \over 2}x^2 + 2x \phantom{00} \text{--- (1)} \\ \\ y & = 2 - {1 \over 2}x \phantom{00} \text{--- (2)} \\ \\ \text{Substitute } & \text{(1) into (2),} \\ {1 \over 2}x^2 + 2x & = 2 - {1 \over 2}x \\ {1 \over 2}x^2 + 2x + {1 \over 2}x - 2 & = 0 \\ {1 \over 2}x^2 + {5 \over 2}x - 2 & = 0 \\ 2 \left({1 \over 2}x^2 + {5 \over 2}x - 2\right) & = 2(0) \\ x^2 + 5x - 4 & = 0 \end{align}
(a)
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|---|---|---|
y | -16 | -9 | -4 | -1 | 0 | -1 | -4 | -9 |
(b)
\begin{align} -2x^2 + 4x & = 2 \\ {1 \over 2}(-2x^2 + 4x) & = {1 \over 2}(2) \\ -x^2 + 2x & = 1 \\ \underbrace{-x^2 + 2x - 1}_\text{Curve} & = 0 \\ \\ \text{From graph, } & x = 1 \phantom{000000} [\text{Look for } x \text{-intercept}] \end{align}
(c) The maximum point of the graph is (1, 0). Thus, k must be smaller than 0,
$$ k < 0 $$
(d) I think this part is more for A Maths
\begin{align} x^2 + 2x + 2 & = mx \\ -(x^2 + 2x + 2) & = - mx \\ - x^2 - 2x - 2 & = - mx \\ - x^2 - 2x - 2 + 4x & = -mx + 4x \\ - x^2 + 2x - 2 & = (4 - m)x \\ - x^2 + 2x - 2 + 1 & = (4 - m)x + 1 \\ \underbrace{-x^2 + 2x - 1}_\text{Curve} & = (4 - m)x + 1 \\ \\ \text{Draw } & y = (4 - m)x + 1 \\ \\ \text{Let } & x = 0, \\ y & = (4 - m)(0) + 1 \\ y & = 0 + 1 \\ y & = 1 \\ \\ \therefore \text{Construct two lines } & \text{from } (0, 1) \text{ that meet curve only once} \\ \\ \\ y & = (4 - m)x + 1 \end{align} \begin{align} \text{Using } & (-1.45, -6), &&& \text{Using } & (1.45, -0.2), \\ -6 & = (4 - m)(-1.45) + 1 &&& -0.2 & = (4 - m)(1.45) + 1 \\ -6 & = -5.8 + 1.45m + 1 &&& -0.2 & = 5.8 - 1.45m + 1 \\ -1.45m & = -5.8 + 1 + 6 &&& 1.45m & = 5.8 + 1 + 0.2 \\ -1.45m & = 1.2 &&& 1.45m & = 7 \\ m & = {1.2 \over -1.45} &&& m & = {7 \over 1.45} \\ m & = -0.82758 &&& m & = 4.8275 \\ m & \approx -0.83 \text{ ( 2 d.p.)} &&& m & \approx 4.83 \text{ (2 d.p.)} \end{align}