New Discovering Mathematics 3A Textbook solutions
Ex 2.2
Please email me if you spot any mistakes or have any questions.
Solutions
Click to display or to hide
(a)
\begin{align} x + 1 & > 3 &&& 3x & > 15 \\ x & > 3 - 1 &&& x & > {15 \over 3} \\ x & > 2 &&& x & > 5 \end{align}
$$ x > 5 $$
(b)
\begin{align} x - 1 & \le - 4 &&& 3x - 5 & \le 4 \\ x & \le -4 + 1 &&& 3x & \le 4 + 5 \\ x & \le -3 &&& 3x & \le 9 \\ & &&& x & \le {9 \over 3} \\ & &&& x & \le 3 \end{align}
$$ x \le -3 $$
(c)
\begin{align} 2x + 5 & \le 0 &&& 7x - 1 & \ge 13 \\ 2x & \le -5 &&& 7x & \ge 13 + 1 \\ x & \le {-5 \over 2} &&& 7x & \ge 14 \\ x & \le -2.5 &&& x & \ge {14 \over 7} \\ x & \le -2.5 &&& x & \ge 2 \end{align}
$$ \text{No solutions} $$
(d)
\begin{align} 5x - 3 & < 2 &&& 4x + 7 & \ge x + 3 \\ 5x & < 2 + 3 &&& 4x - x & \ge 3 - 7 \\ 5x & < 5 &&& 3x & \ge - 4 \\ x & < {5 \over 5} &&& x & \ge -{4 \over 3} \\ x & < 1 \end{align}
$$ -1{1 \over 3} \le x < 1 $$
(e)
\begin{align} 6x + 2 & \ge 3x + 11 &&& 9x - 4 & > 5x \\ 6x - 3x & \ge 11 - 2 &&& 9x - 5x & > 4 \\ 3x & \ge 9 &&& 4x & > 4 \\ x & \ge {9 \over 3} &&& x & > {4 \over 4} \\ x & \ge 3 &&& x & > 1 \end{align}
$$ x \ge 3 $$
(f)
\begin{align} 9 - 2x & > 7 - x &&& 11 - 6x & < 8 - 10x \\ -2x + x & > 7 - 9 &&& -6x + 10x & < 8 - 11 \\ -x & > -2 &&& 4x & < -3 \\ x & < 2 &&& x & < -{3 \over 4} \end{align}
$$ x < -{3 \over 4} $$
(g)
\begin{align} {x \over 2} - 1 & < 3 &&& {2x \over 5} -3 & \le x \\ {x \over 2} & < 3 + 1 &&& {2x \over 5} & \le x + 3 \\ {x \over 2} & < 4 &&& {2x \over 5} & \le {x + 3 \over 1} \\ {x \over 2} & < {8 \over 2} &&& {2x \over 5} & \le {5(x + 3) \over 5} \\ x & < 8 &&& 2x & \le 5(x + 3) \\ & &&& 2x & \le 5x + 15 \\ & &&& 2x - 5x & \le 15 \\ & &&& -3x & \le 15 \\ & &&& x & \ge {15 \over -3} \\ & &&& x & \ge -5 \end{align}
$$ -5 \le x < 8 $$
(h)
\begin{align} {x - 1 \over 4} & \le {x + 1 \over 3} &&& {5 - 2x \over 7} & > 1 \\ {3(x - 1) \over 12} & \le {4(x + 1) \over 12} &&& {5 - 2x \over 7} & > {7 \over 7} \\ 3(x - 1) & \le 4(x + 1) &&& 5 - 2x & > 7 \\ 3x - 3 & \le 4x + 4 &&& -2x & > 7 - 5 \\ 3x - 4x & \le 4 + 3 &&& -2x & > 2 \\ -x & \le 7 &&& x & < {2 \over -2} \\ x & \ge - 7 &&& x & < -1 \end{align}
$$ -7 \le x < -1 $$
(a)
\begin{align} -5 & < 2x + 1 &&& 2x + 1 & \le 11 \\ -2x & < 1 + 5 &&& 2x & \le 11 - 1 \\ -2x & < 6 &&& 2x & \le 10 \\ x & > {6 \over -2} &&& 2x & \le {10 \over 2} \\ x & > -3 &&& x & \le 5 \end{align}
$$ -3 < x \le 5 $$
(b)
\begin{align} 3x - 5 & < 31 &&& 31 & < 7 - 6x \\ 3x & < 31 + 5 &&& 6x & < 7 - 31 \\ 3x & < 36 &&& 6x & < -24 \\ x & < {36 \over 3} &&& x & < {-24 \over 6} \\ x & < 12 &&& x & < -4 \end{align}
$$ x < -4 $$
(c)
\begin{align} -6 & \le 2x &&& 2x & \le 6x - 1 \\ {-6 \over 2} & \le x &&& 2x - 6x & \le -1 \\ -3 & \le x &&& -4x & \le -1 \\ & &&& x & \ge {-1 \over -4} \\ & &&& x & \ge {1 \over 4} \end{align}
$$ x \ge {1 \over 4} $$
(d)
\begin{align} 3x & \le 5x + 13 &&& 5x + 13 & < 4x + 9 \\ 3x - 5x & \le 13 &&& 5x - 4x & < 9 - 13 \\ -2x & \le 13 &&& x & < -4 \\ x & \ge {13 \over -2} \\ x & \ge -6{1 \over 2} \end{align}
$$ -6{1 \over 2} \le x < -4 $$
(a)
\begin{align} 2(4x + 1) & \ge 3(5x - 4) &&& 3(2x - 6) & < 5(x + 1) \\ 8x + 2 & \ge 15x - 12 &&& 6x - 18 & < 5x + 5 \\ 8x - 15x & \ge -12 - 2 &&& 6x - 5x & < 5 + 18 \\ -7x & \ge -14 &&& x & < 23 \\ x & \le {-14 \over -7} \\ x & \le 2 \end{align}
$$ x \le 2 $$
(b)
\begin{align}
{3 \over 4}(x + 2) & \le x + 5
&&&
x - 4 & > {2 \over 3}(3x + 1) \\
{3 \over 4}x + {3 \over 2} & \le x + 5
&&&
x - 4 & > 2x + {2 \over 3} \\
{3 \over 4}x - x & \le 5 - {3 \over 2}
&&&
x - 2x & > {2 \over 3} + 4 \\
-{1 \over 4}x & \le {7 \over 2}
&&&
-x & > {14 \over 3} \\
x & \ge { {7 \over 2} \over -{1 \over 4}}
&&&
x & < - {14 \over 3} \\
x & \ge -14
&&&
x & < - 4{2 \over 3}
\end{align}
$$ -14 \le x < -4{2 \over 3} $$
(c)
\begin{align}
3(x - 2) & < 5(x + 1)
&&&
5(x + 1) & \le 3 - x \\
3x - 6 & < 5x + 5
&&&
5x + 5 & \le 3 - x \\
3x - 5x & < 5 + 6
&&&
5x + x & \le 3 - 5 \\
-2x & < 11
&&&
6x & \le -2 \\
x & > {11 \over -2}
&&&
x & \le {-2 \over 6} \\
x & > -5{1 \over 2}
&&&
x & \le -{1 \over 3}
\end{align}
$$ -5{1 \over 2} < x \le -{1 \over 3} $$
(d)
\begin{align} {x \over 3} & \le {x - 2 \over 2} &&& {x - 2 \over 2} & < {3x + 7 \over 4} \\ {2x \over 6} & \le {3(x - 2) \over 6} &&& {2(x - 2) \over 4} & < {3x + 7 \over 4} \\ 2x & \le 3(x - 2) &&& 2(x - 2) & < 3x + 7 \\ 2x & \le 3x - 6 &&& 2x - 4 & < 3x + 7 \\ 2x - 3x & \le -6 &&& 2x - 3x & < 7 + 4 \\ -x & \le -6 &&& -x & < 11 \\ x & \ge 6 &&& x & > -11 \end{align}
$$ x \ge 6 $$
\begin{align}
-2 & < {5x - 1 \over 8}
&&&
{5x - 1 \over 8} & \le 2 \\
{-16 \over 8} & < {5x - 1 \over 8}
&&&
{5x - 1 \over 8} & \le {16 \over 8} \\
-16 & < 5x - 1
&&&
5x - 1 & \le 16 \\
-5x & < -1 + 16
&&&
5x & \le 16 + 1 \\
-5x & < 15
&&&
5x & \le 17 \\
x & > {15 \over -5}
&&&
x & \le {17 \over 5} \\
x & > -3
&&&
x & \le 3{2 \over 5}
\end{align}
\begin{align}
-3 < & \phantom{.} x \le 3{2 \over 5} \\
\\
\text{Integers: } & -2, -1, 0, 1, 2, 3
\end{align}
(a)
\begin{align}
-6 & < 5x - 6
&&&
5x - 6 & \le 36 \\
-5x & < -6 + 6
&&&
5x & \le 36 + 6 \\
-5x & < 0
&&&
5x & \le 42 \\
x & > {0 \over -5}
&&&
x & \le {42 \over 5} \\
x & > 0
&&&
x & \le 8{2 \over 5}
\end{align}
$$ 0 < x \le 8{2 \over 5} $$
(b) A prime number is a positive integer with only two factors, one and itself
$$ \text{Prime numbers: } 2, 3, 5, 7 $$
\begin{align} 2x - 3 & \le 4x + 6 &&& 8x - 1 & > 5x - 7 \\ 2x - 4x & \le 6 + 3 &&& 8x - 5x & > -7 + 1 \\ -2x & \le 9 &&& 3x & > -6 \\ x & \ge {9 \over -2} &&& x & > {-6 \over 3} \\ x & \ge -4{1 \over 2} &&& x & > -2 \end{align}
\begin{align} \therefore & \phantom{.} x > -2 \\ \\ \text{Smallest } & \text{integer: } -1 \end{align}
(a)
\begin{align}
{x - 6 \over 2} & \le {x + 5 \over 4}
&&&
{x + 5 \over 4} & < {2x - 11 \over 3} \\
{2(x - 6) \over 4} & \le {x + 5 \over 4}
&&&
{3(x + 5) \over 12} & < {4(2x - 11) \over 12} \\
2(x - 6) & \le x + 5
&&&
3(x + 5) & < 4(2x - 11) \\
2x - 12 & \le x + 5
&&&
3x + 15 & < 8x - 44 \\
2x - x & \le 5 + 12
&&&
3x - 8x & < -44 - 15 \\
x & \le 17
&&&
-5x & < -59 \\
& &&&
x & > {-59 \over 5} \\
& &&&
x & > 11{4 \over 5}
\end{align}
\begin{align}
& 11{4 \over 5} < x \le 17 \\
\\
\text{Integers: } & 12, 13, 14, 15, 16, 17
\end{align}
(b) A prime number is a positive integer with only two factors, one and itself
\begin{align} 11{4 \over 5} < x \le 17 & \\ \\ \text{Prime numbers: } & 13, 17 \end{align}
(c) Perfect squares: 12, 22, 32, 42, ...
\begin{align} 11{4 \over 5} < x \le 17 & \\ \\ \text{Perfect square: } & 4^2 = 16 \end{align}
Referring to the 4th quadrant in the diagram, the x-coordinate is positive while the y-coordinate is negative
\begin{align} {2k - 1 \over 3} & > 0 &&& {7 - k \over 5} & < 0 \\ {2k - 1 \over 3} & > {0 \over 3} &&& {7 - k \over 5} & < {0 \over 5} \\ 2k - 1 & > 0 &&& 7 - k & < 0 \\ 2k & > 1 &&& -k & < -7 \\ k & > {1 \over 2} &&& k & > 7 \end{align}
$$ k > 7 $$
\begin{align}
\text{For } x \text{ to be } 1, 2, 3, 4 \text{ or } 5,
& \phantom{0}
5 < 1 - 2k \le 6
\end{align}
\begin{align}
5 & < 1 - 2k
&&&
1 - 2k & \le 6 \\
2k & < 1 - 5
&&&
-2k & \le 6 - 1 \\
2k & < -4
&&&
-2k & \le 5 \\
k & < {-4 \over 2}
&&&
k & \ge {5 \over -2} \\
k & < -2
&&&
k & \ge -2.5
\end{align}
$$ -2.5 \le k < -2 $$
(a) Both inequalities must satisfy x < - 2
\begin{align}
ax + 3 & > 2x + b
&&&
cx - 1 & > 5x - 4 \\
ax - 2x & > b - 3
&&&
cx - 5x & > - 4 + 1 \\
(a - 2)x & > b - 3
&&&
(c - 5)x & > - 3 \\
\\
\text{If } a = 1,& \phantom{.} b =5,
&&&
\text{If } & c = 1, \\
(1 - 2)x & > 5 - 3
&&&
(1 - 5)x & > - 3 \\
- x & > 2
&&&
-4x & > - 3 \\
x & < - 2
&&&
x & < {3 \over 4} \phantom{000000} [\text{Both satisfies } x < -2]
\end{align}
$$ \therefore a = 1, b = 5, c = 1 $$
(b) One equality must satisfy x > -3 and the other equality must satisfy x < 4
\begin{align}
(a - 2)x & > b - 3
&&&
(c - 5)x & > - 3 \\
\\
\text{If } a = 1 &, b = -1,
&&&
\text{If } c & = 6, \\
(1 - 2)x & > -1 - 3
&&&
(6 - 5)x & > -3 \\
-x & > - 4
&&&
x & > - 3 \\
x & < 4
\end{align}
$$ \therefore a = 1, b = -1, c = 6 $$
\begin{align} x - 2a & > 1 &&& 6 - 3x & \ge -1 \\ x & > 1 + 2a &&& -3x & \ge -1 -6 \\ & &&& -3x & \ge - 7 \\ & &&& x & \le {-7 \over -3} \\ & &&& x & \le 2{1 \over 3} \end{align}
\begin{align} \text{For inequalities } & \text{to have no solution,} \\ \\ 1 + 2a & \ge 2{1 \over 3} \\ 2a & \ge 2{1 \over 3} - 1 \\ 2a & \ge 1{1 \over 3} \\ a & \ge { 1{1 \over 3} \over 2} \\ a & \ge {2 \over 3} \end{align}