New Discovering Mathematics 3A Textbook solutions
Ex 2.3
Please email me if you spot any mistakes or have any questions.
Solutions
Click to display or to hide
\begin{align}
\text{Length of } n \text{ bricks} & = 5 \times n \\
& = 5n \text{ cm}
\end{align}
\begin{align}
5n & > 28
&&&
5n & < 40 \\
n & > {28 \over 5}
&&&
n & < {40 \over 5} \\
n & > 5.6
&&&
n & < 8
\end{align}
\begin{align}
5.6 < n < 8 & \\
\\
\text{Possible values of } n & = 6, 7
\end{align}
\begin{align}
\text{Volume of cylinder} & = \text{Base area} \times \text{Height} \\
& = 50 \times h \\
& = 50h \text{ cm}^3
\end{align}
\begin{align}
50h & \ge 200
&&&
50h & \le 320 \\
h & \ge {200 \over 50}
&&&
h & \le {320 \over 50} \\
h & \ge 4
&&&
h & \le 6.4
\end{align}
$$ 4 \le h \le 6.4 $$
(a)
\begin{align} \text{Temperature of water} & = 24 + 7 \times t \\ & = (24 + 7t)^\circ \text{C} \end{align}
(b)
\begin{align}
24 + 7t & \ge 90
&&&
24 + 7t & \le 98 \\
7t & \ge 90 -24
&&&
7t & \le 98 - 24 \\
7t & \ge 66
&&&
7t & \le 74 \\
t & \ge {66 \over 7}
&&&
t & \le {74 \over 7} \\
t & \ge 9{3 \over 7}
&&&
t & \le 10{4 \over 7}
\end{align}
$$ 9{3 \over 7} \le t \le 10{4 \over 7} $$
(a)
\begin{align} \text{Total amount} & = 3 \times 50 + n \times 10 \\ & = \$ (150 + 10n) \end{align}
(b)(i)
\begin{align} & 260 \le 150 + 10n < 310 \end{align}
(b)(ii)
\begin{align}
260 & \le 150 + 10n
&&&
150 + 10n & < 310 \\
-10n & \le 150 - 260
&&&
10n & < 310 - 150 \\
-10n & \le -110
&&&
10n & < 160 \\
n & \ge {-110 \over -10}
&&&
n & < {160 \over 10} \\
n & \ge 11
&&&
n & < 16
\end{align}
\begin{align}
11 \le n < 16 & \\
\\
\text{Min. no of \$ 10 notes } (n) & = 11
\end{align}
(a)(i)
$$ 19.5 \le x < 20.5 $$
(a)(ii)
$$ 12.5 \le y < 13.5 $$
(b)(i)
\begin{align} \text{Perimeter (smallest possible)} & = 2(19.5) + 2(12.5) \\ & = 64 \text{ m} \\ \\ \text{Perimeter (largest possible)} & = 2(20.5) + 2(13.5) \\ & = 68 \text{ m} \\ \\ \\ 64 \le & \text{ Perimeter} < 68 \end{align}
(b)(ii)
\begin{align} \text{Area (smallest possible)} & = 19.5 \times 12.5 \\ & = 243.75 \text{ m}^2 \\ \\ \text{Area (largest possible)} & = 20.5 \times 13.5 \\ & = 276.75 \text{ m}^2 \\ \\ \\ 243.75 \le & \text{ Area} < 276.75 \end{align}
\begin{align}
\text{Perimeter} & = 2(2x + 1) + 2(x) \\
& = 4x + 2 + 2x \\
& = (6x + 2) \text{ cm}
\end{align}
\begin{align}
6x + 2 & \ge 38
&&&
6x + 2 & \le 80 \\
6x & \ge 38 - 2
&&&
6x & \le 80 - 2 \\
6x & \ge 36
&&&
6x & \le 78 \\
x & \ge {36 \over 6}
&&&
x & \le {78 \over 6} \\
x & \ge 6
&&&
x & \le 13
\end{align}
$$ 6 \le x \le 13 $$
\begin{align} x - 11 + x - 8 & > x + 4 &&& x - 11 + x + 4 & > x - 8 \\ x + x - x & > 4 + 11 + 8 &&& x + x - x & > -8 + 11 - 4 \\ x & > 23 &&& x & > -1 \end{align}
$$ x > 23 $$
\begin{align}
\text{Mean PSI} & = {40 + 54 + 44 + 38 + x \over 5} \\
& = {176 + x \over 5}
\end{align}
\begin{align}
{176 + x \over 5} & > 45
&&&
{176 + x \over 5} & < 48 \\
{176 + x \over 5} & > {45 \over 1}
&&&
{176 + x \over 5} & < {48 \over 1} \\
{176 + x \over 5} & > {225 \over 5}
&&&
{176 + x \over 5} & < {240 \over 5} \\
176 + x & > 225
&&&
176 + x & < 240 \\
x & > 225 - 176
&&&
x & < 240 - 176 \\
x & > 49
&&&
x & < 64
\end{align}
\begin{align}
49 < x < 64 & \\
\\
\text{Smallest integer: } & 50
\end{align}
(a)
\begin{align} \text{No. of matches won} & = 38 - x - 2x \\ & = 38 - 3x \\ \\ \text{Total points} & = 3(38 - 3x) + 2x \\ & = 114 - 9x + 2x \\ & = 114 - 7x \end{align}
(b)(i)
\begin{align}
114 - 7x & \ge 85
&&&
114 - 7x & < 94 \\
-7x & \ge 85 - 114
&&&
-7x & < 94 - 114 \\
-7x & \ge -29
&&&
-7x & < -20 \\
x & \le {-29 \over -7}
&&&
x & > {-20 \over 7} \\
x & \le 4{1 \over 7}
&&&
x & > 2{6 \over 7}
\end{align}
\begin{align}
2 {6 \over 7} < x < 4{1 \over 7} & \\
\\
\text{Largest value of } x & = 4 \\
\\
\text{Matches drawn} & = 2x \\
& = 2(4) \\
& = 8
\end{align}
(b)(ii) To find the greatest number of matches won (38 - 3x), the value of x must be the smallest
\begin{align} 2 {6 \over 7} < & \phantom{.} x < 4{1 \over 7} \\ \\ \text{Smallest value of } x & = 3 \\ \\ \text{Matches won} & = 38 - 3(3) \\ & = 29 \end{align}
\begin{align} \text{Let } x \text{ represent the num} & \text{ber of hours} \\ \\ \text{Charges from company } A & = 25 \times x \\ & = \$ 25x \\ \\ \text{Charges from company } B & = 35 + 18 \times x \\ & = \$ (35 + 18x) \\ \\ 35 + 18x & < 25x \\ 18x - 25x & < - 35 \\ -7x & < -35 \\ x & > {-35 \over -7} \\ x & > 5 \\ \\ \\ \text{Minimum hours} & = \text{Smallest integer value of } x \\ & = 6 \text{ hours} \end{align}
\begin{align} \text{Let } x \text{ represent the num} & \text{ber senior citizens} \\ \\ \text{Total number of bottles} & = 5 \times x + 12 \\ & = 5x + 12 \\ \\ \text{No. of senior citizens with 6 bottles} & = x - 1 \\ \\ 5x + 12 - 6(x - 1) & < 4 \phantom{000000} [\text{Last senior citizen receive less than 4}] \\ 5x + 12 - 6x + 6 & < 4 \\ 5x - 6x & < 4 - 12 - 6 \\ -x & < -14 \\ x & > 14 \\ \\ \text{Smallest no. of senior citizens} & = 15 \end{align}
\begin{align} \text{Time} & = {\text{Distance} \over \text{Speed}} \\ \\ \text{Let } x \text{ represent } & \text{distance of route } X \\ \\ \text{Time taken (route } X) & = {x \over 60} \\ \\ \text{Time taken (route } Y) & = {x + 1 \over 50} \\ \\ 8 \text{ mins} & = {8 \over 60} \text{ h} \\ & = {2 \over 15} \text{ h} \\ \\ {x + 1 \over 50} - {x \over 60} & \ge {2 \over 15} \\ {6(x + 1) \over 300} - {5x \over 300} & \ge {40 \over 300} \\ {6(x + 1) - 5x \over 300} & \ge {40 \over 300} \\ 6(x + 1) - 5x & \ge 40 \\ 6x + 6 - 5x & \ge 40 \\ 6x - 5x & \ge 40 - 6 \\ x & \ge 34 \\ \\ \text{Shortest possible distance (route } X) & = 34 \text{ km} \end{align}
(a)(i)
\begin{align} 5.7 + 0.11 & = 5.81 \text{ million} \end{align}
(a)(ii)
\begin{align} 5.81 + 0.11 & = 5.92 \text{ million} \end{align}
(a)(iii)
\begin{align} (5.7 + 0.11x) \text{ million} \end{align}
(b)
\begin{align} 5.7 + 0.11x & \ge 6.5 \\ 0.11x & \ge 6.5 - 5.7 \\ 0.11x & \ge 0.8 \\ x & \ge {0.8 \over 0.11} \\ x & \ge 7{3 \over 11} \\ \\ \text{Population will exceed } & 6.5 \text{ million first 8 years after 2020} \\ \\ \therefore \text{End of } & 2028 \end{align}
(c)
\begin{align} & \text{No. Other factors such as lack of resources, pandemics that may affect the rate of increase} \end{align}
\begin{align}
\text{Cost for tables} & = 20 \times x \\
& = \$ 20 x \\
\\
\text{Cost for chairs} & = 50 \times 3 \\
& = \$ 150 \\
\\
\text{Cost for fans} & = 1000 - 20x - 150 - \underbrace{40}_\text{Transportation} \\
& = \$ (810 - 20x) \\
\\
\text{No. of fans} & = {810 - 20x \over 70}
\end{align}
\begin{align}
\text{No. of fans} & \ge 3
&&&
\text{Budget for tables & chairs} & \ge \$ 600 \\
{810 - 20x \over 70} & \ge 3
&&&
20x + 150 & \ge 600 \\
{810 - 20x \over 70} & \ge {210 \over 70}
&&&
20x & \ge 600 - 150 \\
810 - 20x & \ge 210
&&&
20x & \ge 450 \\
-20x & \ge 210 - 810
&&&
x & \ge {450 \over 20} \\
-20x & \ge -600
&&&
x & \ge 22.5 \\
x & \le {-600 \over -20} \\
x & \le 30
\end{align}
\begin{align}
22.5 \le & \phantom{.} x \le 30 \\
\\
\text{Max. no of fans} & = {810 - 20x \over 70} \\
& = {810 - 20(23) \over 70}
\phantom{00000000} [\text{Choose smallest integer value of } x ]
\\
& = 5
\end{align}