S4 E Maths Textbook Solutions >> New Syllabus Mathematics 4 (7th Edition) 4 textbook solutions >>
Ex 2A
Please email me if you spot any mistakes or have any questions.
Solutions
Click to display or to hide
\begin{align*} S & = \{ \text{(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6), (T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)} \} \end{align*}
First part
\begin{align*} S & = \{ F_1 , F_2, F_3, NF_1, NF_2, NF_3, NF_4 \} \\ \\ \text{P(pen is not faulty)} & = {4 \over 7} \end{align*}
Second part
\begin{align*} \text{P(Second pen is faulty)} & = {3 \over 6} \\ & = {1 \over 2} \end{align*}
(i)
\begin{align*} \text{P('S' is chosen)} & = {2 \over 11} \end{align*}
(ii)
\begin{align*} \text{P('P' or 'I' is chosen)} & = {1 + 3 \over 11} \\ & = {4 \over 11} \end{align*}
(iii)
\begin{align*} \text{P(a vowel is chosen)} & = {1 + 3 \over 11} \\ & = {4 \over 11} \end{align*}
(iv)
\begin{align*} \text{P(a consonant is chosen)} & = 1 - \text{P(a vowel is chosen)} \\ & = 1 - {4 \over 11} \\ & = {7 \over 11} \end{align*}
(a)
First box | ||||
1 | 2 | 3 | ||
Second box | 2 | 1, 2 | 2, 2 | 3, 2 |
3 | 1, 3 | 2, 3 | 3, 3 | |
4 | 1, 4 | 2, 4 | 3, 4 | |
5 | 1, 5 | 2, 5 | 3, 5 |
(b)(i)
\begin{align*} \text{Total number of possible outcomes} & = 3 \times 4 \\ & = 12 \\ \\ \text{P(Same number on both cards)} & = {2 \over 12} \\ & = {1 \over 6} \end{align*}
(b)(ii)
\begin{align*} \text{P(Different number on cards)} & = 1 - \text{P(Same number on both cards)} \\ & = 1 - {1 \over 6} \\ & = {5 \over 6} \end{align*}
(b)(iii)
\begin{align*} \text{P(Larger number is 3)} & = {3 \over 12} \\ & = {1 \over 4} \end{align*}
(a)
First number | |||||||
+ | 0 | 1 | 2 | 3 | 4 | 5 | |
Second number | 0 | 0 | 1 | 2 | 3 | 4 | 5 |
1 | 1 | 2 | 3 | 4 | 5 | 6 | |
2 | 2 | 3 | 4 | 5 | 6 | 7 | |
3 | 3 | 4 | 5 | 6 | 7 | 8 | |
4 | 4 | 5 | 6 | 7 | 8 | 9 | |
5 | 5 | 6 | 7 | 8 | 9 | 10 |
(b)
\begin{align*} \text{Number of possible outcomes} & = 6 \times 6 \\ & = 36 \end{align*}
(c)(i)
\begin{align*} \text{P(Sum of two numbers is 7)} & = {4 \over 36} \\ & = {1 \over 9} \end{align*}
(c)(ii) Prime numbers have two factors, 1 and itself
\begin{align*} \text{P(Sum of two numbers is a prime number)} & = {3 + 4 + 6 + 4 \over 36} \\ & = {17 \over 36} \end{align*}
(c)(iii)
\begin{align*} \text{P(Sum of two numbers is not a prime number)} & = 1 - \text{P(Sum of two numbers is a prime number)} \\ & = 1 - {17 \over 36} \\ & = {19 \over 36} \end{align*}
(c)(iv) Even numbers are divisible by 2
\begin{align*} \text{P(Sum of two numbers is an even number)} & = {1 + 3 + 5 + 5 + 3 + 1 \over 36} \\ & = {1 \over 2} \end{align*}
(c)(v)
\begin{align*} \text{P(Sum of two numbers is an odd number)} & = 1 - \text{P(Sum of two numbers is an even number)} \\ & = 1 - {1 \over 2} \\ & = {1 \over 2} \end{align*}
(d)
\begin{align*} \text{P(Sum of two numbers is 7)} & = {1 \over 9} \\ \\ \text{P(Sum of two numbers is 8)} & = {3 \over 36} \\ & = {1 \over 12} \\ \\ \therefore \text{Sum of 7 is more } & \text{likely to occur} \end{align*}
(a)
$x$ | ||||
+ | 4 | 5 | 6 | |
$y$ | 7 | 11 | 12 | 13 |
8 | 12 | 13 | 14 | |
9 | 13 | 14 | 15 |
$x$ | ||||
× | 4 | 5 | 6 | |
$y$ | 7 | 28 | 35 | 42 |
8 | 32 | 40 | 48 | |
9 | 36 | 45 | 54 |
(b)(i) Prime numbers have two factors, 1 and itself
\begin{align*} \text{P(} x + y \text{ is a prime number)} & = {4 \over 9} \end{align*}
(b)(ii)
\begin{align*} \text{P(} x + y \text{ is greater than 12)} & = {6 \over 9} \\ & = {2 \over 3} \end{align*}
(b)(iii)
\begin{align*} \text{P(} x + y \text{ is greater than 12)} & = {8 \over 9} \end{align*}
(c)(i) Odd numbers are not divisible by 2
\begin{align*} \text{P(} xy \text{ is an odd number)} & = {2 \over 9} \end{align*}
(c)(ii)
\begin{align*} \text{P(} xy \text{ is an even number)} & = 1 - \text{P(} xy \text{ is an odd number)} \\ & = 1 - {2 \over 9} \\ & = {7 \over 9} \end{align*}
(c)(iii)
\begin{align*} \text{P(} xy \text{ is most 40)} & = {5 \over 9} \end{align*}
Tree diagram:
(i)
\begin{align*} \text{P(Three heads)} & = \text{P(HHH)} \\ & = {1 \over 8} \end{align*}
(ii)
\begin{align*} \text{P(Exactly two heads)} & = \text{P(HHT or HTH or THH)} \\ & = {3 \over 8} \end{align*}
(iii)
\begin{align*} \text{P(At least two heads)} & = \text{P(HHT or HTH or THH or HHH)} \\ & = {4 \over 8} \\ & = {1 \over 2} \end{align*}
Possible outcomes:
\begin{align*} S & = \{ \text{RB, RR, BB, BR, WB, WR} \} \end{align*}
(i)
\begin{align*} \text{P(Two marbles are of same colour)} & = {2 \over 6} \\ & = {1 \over 3} \end{align*}
(ii)
\begin{align*} \text{P(One blue marble & one red marble)} & = {2 \over 6} \\ & = {1 \over 3} \end{align*}
(iii)
\begin{align*} \text{P(Two marbles are of different colours)} & = 1- \text{P(Two marbles are of same colour)} \\ & = 1 - {1 \over 3} \\ & = {2 \over 3} \end{align*}
(a)
\begin{align*} S & = \{ 11, 12, 13, 21, 22, 23, 31, 32, 33 \} \end{align*}
(b)(i)
\begin{align*} \text{P(Number divisible by 3)} & = \text{P(12 or 21 or 33)} \\ & = {3 \over 9} \\ & = {1 \over 3} \end{align*}
(b)(ii)
\begin{align*} \text{P(Number is a perfect square)} & = {0 \over 9} \\ & = 0 \end{align*}
(b)(iii) A prime number only has two factors, 1 and itself
\begin{align*} \text{P(A prime number is formed)} & = \text{P(11 or 13 or 23 or 31)} \\ & = {4 \over 9} \end{align*}
(b)(iv) A composite number has more than two factors
\begin{align*} \text{P(A composite number is formed)} & = {5 \over 9} \end{align*}
Sample space:
\begin{align*} S & = \{ \text{ BBB, GGG, BBG, BGB, GBB, GGB, GBG, BGG } \} \end{align*}
(i)
\begin{align*} \text{P(Three grandsons)} & = \text{P(BBB)} \\ & = {1 \over 8} \end{align*}
(ii)
\begin{align*} \text{P(Two grandsons & one granddaughter)} & = \text{P(BBG or BGB or GBB)} \\ & = {3 \over 8} \end{align*}
(iii)
\begin{align*} \text{P(One grandsons & two granddaughters)} & = \text{P(BGG or GBG or GGB)} \\ & = {3 \over 8} \end{align*}
Note: There are 25 outcomes in total
(a)(i)
\begin{align*} \text{P(Sum is 6)} & = \text{P(1 + 5 or 5 + 1 or 2 + 4 or 4 + 2 or 3 + 3)} \\ & = {5 \over 25} \\ & = {1 \over 5} \end{align*}
(a)(ii)
\begin{align*} \text{P(Same number on both spinners)} & = \text{P(1, 1 or 2, 2 or 3, 3 or 4, 4 or 5, 5)} \\ & = {5 \over 25} \\ & = {1 \over 5} \end{align*}
(a)(iii)
\begin{align*} \text{P(Different number on the spinners)} & = 1 - \text{P(Same numbers on both spinners)} \\ & = 1 - {1 \over 5} \\ & = {4 \over 5} \end{align*}
(a)(iv) A prime number only has two factors, 1 and itself
\begin{align*} \text{P(Two different prime numbers)} & = \text{P(2, 3 or 3, 2 or 2, 5 or 5, 2 or 3, 5 or 5, 3)} \\ & = {6 \over 25} \end{align*}
(b)
\begin{align*} \text{P(First number less than second number)} & = \text{P(1, 2/3/4/5 or 2, 3/4/5 or 3, 4/5 or 4, 5)} \\ & = {4 + 3 + 2 + 1 \over 25} \\ & = {2 \over 5} \end{align*}
(a)
Die | |||||||
1 | 2 | 3 | 4 | 5 | 6 | ||
Coin | H | 1 | 2 | 3 | 4 | 5 | 6 |
T | 2 | 4 | 6 | 8 | 10 | 12 |
(b)(i)
\begin{align*} \text{P(Score is odd)} & = {3 \over 12} \\ & = {1 \over 4} \end{align*}
(b)(ii)
\begin{align*} \text{P(Score is odd)} & = {9 \over 12} \\ & = {3 \over 4} \end{align*}
(b)(iii) A prime number only has two factors, 1 and itself
\begin{align*} \text{P(Score is a prime number)} & = {2 + 1 + 1 \over 12} \\ & = {1 \over 3} \end{align*}
(b)(iv)
\begin{align*} \text{P(Score is less than or equals to 8)} & = {10 \over 12} \\ & = {5 \over 6} \end{align*}
(b)(v)
\begin{align*} \text{P(Score is a multiple of 3)} & = {4 \over 12} \\ & = {1 \over 3} \end{align*}
(a)
First die | |||||||
- | 1 | 2 | 3 | 4 | 5 | 6 | |
Second die | 1 | 0 | 1 | 2 | 3 | 4 | 5 |
2 | 1 | 0 | 1 | 2 | 3 | 4 | |
3 | 2 | 1 | 0 | 1 | 2 | 3 | |
4 | 3 | 2 | 1 | 0 | 1 | 2 | |
5 | 4 | 3 | 2 | 1 | 0 | 1 | |
6 | 5 | 4 | 3 | 2 | 1 | 0 |
(b)(i)
\begin{align*} \text{Number of outcomes} & = 6 \times 6 \\ & = 36 \\ \\ \text{P(Difference is 1)} & = {10 \over 36} \\ & = {5 \over 18} \end{align*}
(b)(ii)
\begin{align*} \text{P(Difference is non-zero)} & = {36 - 6 \over 36} \\ & = {5 \over 6} \end{align*}
(b)(iii) In the possibility diagram, there are 3 odd numbers in each row
\begin{align*} \text{P(Difference is odd)} & = {18 \over 36} \\ & = {1 \over 2} \end{align*}
(b)(iv) A prime number only has two factors, 1 and itself
\begin{align*} \text{P(Difference is a prime number)} & = {3 + 2 + 3 + 3 + 2 + 3 \over 36} \\ & = {4 \over 9} \end{align*}
(b)(v)
\begin{align*} \text{P(Difference is a multiple of 3)} & = {2 + 2 + 2 + 2 + 2 + 2 \over 36} \\ & = {1 \over 3} \end{align*}
Possible outcomes in the form (First draw, Second draw):
(1, 2), (1, 4), (1, 5), (1, 7)
(2, 1), (2, 4), (2, 5), (2, 7)
(4, 1), (4, 2), (4, 5), (4, 7)
(5, 1), (5, 2), (5, 4), (5, 7)
(7, 1), (7, 2), (7, 4), (7, 5)
(i)
\begin{align*} \text{P(Both balls are prime)} & = \text{P(2, 5 or 2, 7 or 5, 2 or 5, 7 or 7, 2 or 7,5)} \\ & = {6 \over 20} \\ & = {3 \over 10} \end{align*}
(ii)
\begin{align*} \text{P(Sum of two numbers is odd)} & = \text{P(1, 2 or 1, 4 or 2, 1 or 2, 5 or 2, 7 or 4, 1 or 4, 5 or 4, 7 or 5, 2 or 5, 4 or 7, 2 or 7, 4)} \\ & = {12 \over 20} \\ & = {3 \over 5} \end{align*}
(iii)
\begin{align*} \text{P(Product of two numbers is greater than 20)} & = \text{P(4, 7 or 5, 7 or 7, 4 or 7, 5)} \\ & = {4 \over 20} \\ & = {1 \over 5} \end{align*}
(iv) The numbers on the ball, 1, 2, 4, 5 and 7 are not divisible by 3 or by 9. Thus the product of any two numbers is not divisible by 9
\begin{align*} \text{P(Difference of two numbers is less than 7)} & = {20 \over 20} \\ & = 1 \end{align*}
(v)
\begin{align*} \text{P(Product of two numbers is divisible by 9)} & = {0 \over 20} \\ & = 0 \end{align*}
Possible outcomes in the form (first card, second card):
(1, 0), (1, 1), (1, 3), (1, 5)
(2, 0), (2, 1), (2, 3), (2, 5)
(4, 0), (4, 1), (4, 3), (4, 5)
(5, 0), (5, 1), (5, 3), (5, 5)
(i)
\begin{align*} \text{P(Scores on both cards are the same)} & = \text{P(1, 1 or 5, 5)} \\ & = {2 \over 16} \\ & = {1 \over 8} \end{align*}
(ii) A prime number only has two factors, 1 and itself
\begin{align*} \text{P(Scores on both cards are prime numbers)} & = \text{P(2, 3 or 2, 5 or 5, 3 or 5, 5)} \\ & = {4 \over 16} \\ & = {1 \over 4} \end{align*}
(iii)
\begin{align*} \text{P(Sum of scores is odd)} & = \text{P(1, 0 or 2, 1 or 2, 3 or 2, 5 or 4, 1 or 4, 3 or 4, 5 or 5, 0)} \\ & = {8 \over 16} \\ & = {1 \over 2} \end{align*}
(iv)
\begin{align*} \text{P(Sum of scores is divisible by 5)} & = \text{P(2, 3 or 4, 1 or 5, 0 or 5, 5)} \\ & = {4 \over 16} \\ & = {1 \over 4} \end{align*}
(v)
\begin{align*} \text{P(Sum of scores is 6 or less)} & = \text{P(1, 0 or 1, 1 or 1, 3 or 1, 5 or 2, 0 or 2, 1 or 2, 3 or 4, 0 or 4, 1 or 5, 0 or 5, 1)} \\ & = {11 \over 16} \end{align*}
(vi)
\begin{align*} \text{P(Product of scores is not 0)} & = 1 - \text{P(Product of scores is 0)} \\ & = 1 - \text{P(1, 0 or 2, 0 or 3, 0 or 4, 0)} \\ & = 1 - {4 \over 16} \\ & = {3 \over 4} \end{align*}
(vii)
\begin{align*} \text{P(Product of scores is greater than 11)} & = \text{P(4, 3 or 4, 5 or 5, 3 or 5, 5)} \\ & = {4 \over 16} \\ & = {1 \over 4} \end{align*}
Possible outcomes in the form (colour on spinner, head/tail from fair coin):
(Red, Head), (Red, Tail)
(Blue, Head), (Blue, Tail)
(Yellow, Head), (Yellow, Tail)
(i)
\begin{align*} \text{P(Red on spinner and tail on coin)} & = {1 \over 6} \end{align*}
(ii)
\begin{align*} \text{P(Blue or yellow on spinner and head on coin)} & = {2 \over 6} \\ & = {1 \over 3} \end{align*}
Possible outcomes in the form (card from 1st bag, card from 2nd bag):
(1, 1), (1, 2), (1, 7)
(3, 1), (3, 2), (3, 7)
(5, 1), (5, 2), (5, 7)
(i)
\begin{align*} \text{P(Two numbers are odd)} & = \text{P(1, 1 or 1, 7 or 3, 1 or 3, 7 or 5, 1 or 5, 7)} \\ & = {6 \over 9} \\ & = {2 \over 3} \end{align*}
(ii)
\begin{align*} \text{P(Two numbers are prime numbers)} & = \text{P(3, 2 or 3, 7 or 5, 2 or 5, 7)} \\ & = {4 \over 9} \end{align*}
(iii)
\begin{align*} \text{P(Sum greater than 4)} & = \text{P(1, 7 or 3, 2 or 3, 7 or 5, 1 or 5, 2 or 5, 7)} \\ & = {6 \over 9} \\ & = {2 \over 3} \end{align*}
(iv)
\begin{align*} \text{P(Sum that is even)} & = \text{P(1, 1 or 1, 7 or 3, 1 or 3, 7 or 5, 1 or 5, 7)} \\ & = {6 \over 9} \\ & = {2 \over 3} \end{align*}
(v) A prime number only has two factors, 1 and itself
\begin{align*} \text{P(Product that is prime)} & = \text{P(1, 2 or 1, 7 or 3, 1 or 5, 1)} \\ & = {4 \over 9} \end{align*}
(vi)
\begin{align*} \text{P(Product that is greater than 20)} & = \text{P(3, 7 or 5, 7)} \\ & = {2 \over 9} \end{align*}
(vii)
\begin{align*} \text{P(Product that is divisible by 7)} & = \text{P(1, 7 or 3, 7 or 5, 7)} \\ & = {3 \over 9} \\ & = {1 \over 3} \end{align*}
(a)(i)
\begin{align*} \text{P(Face '4' down)} & = {1 \over 4} \end{align*}
(a)(ii) For this to occur, the odd number (either 1 or 3) must be facing down such that the sum of two even numbers and the remaining odd number gives an odd number
\begin{align*} \text{P(Sum of three upper faces is an odd number)} & = \text{P('1' down or '3' down)} \\ & = {2 \over 4} \\ & = {1 \over 2} \end{align*}
(b)
\begin{align*} \text{P(First component tested is defective)} & = {1 \over 7} \end{align*}
(a)(i)
Kate (K) | |||||||
Room | 1A | 1B | 1C | 2A | 2B | 2C | |
Nora (N) | 1A | - | K(1B) N(1A) |
K(1C) N(1A) |
K(2A) N(1A) |
K(2B) N(1A) |
K(2C) N(1A) |
1B | K(1A) N(1B) |
- | K(1C) N(1B) |
K(2A) N(1B) |
K(2B) N(1B) |
K(2C) N(1B) |
|
1C | K(1A) N(1C) |
K(1B) N(1C) |
- | K(2A) N(1C) |
K(2B) N(1C) |
K(2C) N(1C) |
|
2A | K(1A) N(2A) |
K(1B) N(2A) |
K(1C) N(2A) |
- | K(2B) N(2A) |
K(2C) N(2A) |
|
2B | K(1A) N(2B) |
K(1B) N(2B) |
K(1C) N(2B) |
K(2A) N(2B) |
- | K(2C) N(2B) |
|
2C | K(1A) N(2C) |
K(1B) N(2C) |
K(1C) N(2C) |
K(2A) N(2C) |
K(2B) N(2C) |
- |
\begin{align*} \text{No. of possible outcomes} & = 6 \times 6 - 6 \\ & = 30 \\ \\ \text{P(Nora and Kate stay next to each other)} & = {1 + 2 + 1 + 1 + 2 + 1 \over 30} \\ & = {4 \over 15} \end{align*}
(a)(ii)
\begin{align*} \text{P(Nora and Kate stay on different storeys)} & = {3 + 3 + 3 + 3 + 3 + 3 \over 30} \\ & = {3 \over 5} \end{align*}
(a)(iii)
\begin{align*} \text{P(Nora and Kate do not stay next to each other)} & = 1 - \text{P(Nora and Kate stay next to each other)} \\ & = 1 - {4 \over 15} \\ & = {11 \over 15} \end{align*}
(b)
\begin{align*} \text{P(Kate on second floor and next to Nora)} & = {1 + 2 + 1 \over 30} \\ & = {2 \over 15} \end{align*}
Possibility diagram (Y: 6-sided die larger than sum of 2 tetrahedral dices, N: 6-sided die smaller or equal to sum of 2 tetrahedral dices)
6-sided die | |||||||
1 | 2 | 3 | 4 | 5 | 6 | ||
Sum of 2 tetrahedral dices | 1 + 1 = 2 | N | N | Y | Y | Y | Y |
1 + 2 = 3 | N | N | N | Y | Y | Y | |
1 + 3 = 4 | N | N | N | N | Y | Y | |
1 + 4 = 5 | N | N | N | N | N | Y | |
2 + 1 = 3 | N | N | N | Y | Y | Y | |
2 + 2 = 4 | N | N | N | N | Y | Y | |
2 + 3 = 5 | N | N | N | N | N | Y | |
2 + 4 = 6 | N | N | N | N | N | N | |
3 + 1 = 4 | N | N | N | N | Y | Y | |
3 + 2 = 5 | N | N | N | N | N | Y | |
3 + 3 = 6 | N | N | N | N | N | N | |
3 + 4 = 7 | N | N | N | N | N | N | |
4 + 1 = 5 | N | N | N | N | N | Y | |
4 + 2 = 6 | N | N | N | N | N | N | |
4 + 3 = 7 | N | N | N | N | N | N | |
4 + 4 = 8 | N | N | N | N | N | N |
\begin{align*} \text{Number of possible outcomes} & = 6 \times 16 \\ & = 96 \\ \\ \text{P(Score on 6-sided die is greater than sum of scores of the two tetrahedral dice)} & = {4 + 3 + 2 + 1 + 3 + 2 + 1 + 2 + 1 + 1 \over 96} \\ & = {5 \over 24} \end{align*}