S4 E Maths Textbook Solutions >> New Syllabus Mathematics (NSM) 4 textbook solutions >>
Ex 4D
Please email me if you spot any mistakes or have any questions.
Solutions
Click to display or to hide
(i)
$$ 4 \times 3 = 12 \text{ matches} $$
(ii)
\begin{align*} \textbf{PQ} & = \underset{4 \times 3}{\left( \begin{matrix} 5 & 1 & 6 \\ 8 & 4 & 0 \\ 2 & 3 & 7 \\ 3 & 4 & 5 \end{matrix} \right)} \underset{3 \times 1} {\left( \begin{matrix} 3 \\ 1 \\ 0 \end{matrix} \right)} \\ & = \left( \begin{matrix} 5 \times 3 + 1 \times 1 + 6 \times 0 \\ 8 \times 3 + 4 \times 1 + 0 \times 0 \\ 2 \times 3 + 3 \times 1 + 7 \times 0 \\ 3 \times 3 + 4 \times 1 + 5 \times 0\end{matrix} \right) \\ & = \left( \begin{matrix} 16 \\ 28 \\ 9 \\ 13\end{matrix} \right) \end{align*}
(iii)
\begin{align} & PQ \text{ represents the total points obtained by each team in the soccer tournament} \end{align}
\begin{align*} \underset{3 \times 4}{\left( \begin{matrix} 220 & 430 & 555 & 355 \\ 245 & 485 & 520 & 310 \\ 280 & 430 & 515 & 375 \end{matrix} \right)} \underset{4 \times 1}{\left( \begin{matrix} 130 \\ 115 \\ 90 \\ 75\end{matrix} \right)} & = \left( \begin{matrix} 220 \times 130 + 430 \times 115 + 555 \times 90 + 355 \times 75 \\ 245 \times 130 + 485 \times 115 + 520 \times 90 + 310 \times 75 \\ 280 \times 130 + 430 \times 115 + 515 \times 90 + 375 \times 75 \end{matrix} \right) \\ & = \left( \begin{matrix} 154 \phantom{.} 625 \\ 157 \phantom{.} 675 \\ 160 \phantom{.} 325\end{matrix} \right) \\ \\ & \left( \begin{matrix} \$ 154 \phantom{.} 625 \\ \$ 157 \phantom{.} 675 \\ \$ 160 \phantom{.} 325\end{matrix} \right) \begin{matrix} \text{Friday} \\ \text{Saturday} \\ \text{Sunday} \end{matrix} \\ \\ \therefore \text{Total amount collected} & = 154 \phantom{.} 625 + 157 \phantom{.} 675 + 160 \phantom{.} 325 \\ & = \$ 472 \phantom{.} 625 \end{align*}
(i)
\begin{align*} \underset{3 \times 5}{\left( \begin{matrix} 85 & 74 & 80 & 60 & 82 \\ 65 & 84 & 70 & 52 & 94 \\ 38 & 42 & 56 & 40 & 56 \end{matrix} \right)} \underset{5 \times 1}{\left( \begin{matrix} 2.8 \\ 2.4 \\ 2.6 \\ 3 \\ 2.5 \end{matrix} \right)} & = \left( \begin{matrix} 85 \times 2.8 + 74 \times 2.4 + 80 \times 2.6 + 60 \times 3 + 82 \times 2.5 \\ 65 \times 2.8 + 84 \times 2.4 + 70 \times 2.6 + 52 \times 3 + 94 \times 2.5 \\ 38 \times 2.8 + 42 \times 2.4 + 56 \times 2.6 + 40 \times 3 + 56 \times 2.5 \end{matrix} \right) \\ & = \left( \begin{matrix} 1008.6 \\ 956.6 \\ 612.8 \end{matrix} \right) \\ \\ & \left( \begin{matrix} \$ 1008.60 \\ \$ 956.60 \\ \$612.80 \end{matrix} \right) \begin{matrix} \text{Outlet } A \\ \text{Outlet } B \\ \text{Outlet } C \end{matrix} \end{align*}
(ii)
\begin{align*} \text{Total takings} & = 1008.6 + 956.6 + 612.8 \\ & = \$ 2578 \end{align*}
(i)
\begin{align*} \underset{3 \times 4}{\left( \begin{matrix} 22 & 32 & 42 & 28 \\ 18 & 26 & 36 & 32 \\ 27 & 24 & 52 & 25 \end{matrix} \right)} \underset{4 \times 1}{\left( \begin{matrix} 0.9 \\ 1 \\ 1.1 \\ 1.2 \end{matrix} \right)} & = \left( \begin{matrix} 22 \times 0.9 + 32 \times 1 + 42 \times 1.1 + 28 \times 1.2 \\ 18 \times 0.9 + 26 \times 1 + 36 \times 1.1 + 32 \times 1.2 \\ 27 \times 0.9 + 24 \times 1 + 52 \times 1.1 + 25 \times 1.2 \end{matrix} \right) \\ & = \left( \begin{matrix} 131.6 \\ 120.2 \\ 135.5 \end{matrix} \right) \\ \\ & \left( \begin{matrix} 131.6 \\ 120.2 \\ 135.5 \end{matrix} \right) \begin{matrix} \text{Albert Drink Stall} \\ \text{Best Drink Stall} \\ \text{Chandra Drink Stall} \end{matrix} \end{align*}
(ii)
\begin{align*} \underset{1 \times 3}{\left( \begin{matrix} 26 & 29 & 30 \end{matrix} \right)} \underset{3 \times 1}{ \left( \begin{matrix} 131.6 \\ 120.2 \\ 135.5 \end{matrix} \right) } & = \left( \begin{matrix} 26 \times 131.6 + 29 \times 120.2 + 30 \times 135.5 \end{matrix} \right) \\ & = \left( \begin{matrix} 10 \phantom{.} 972.4 \end{matrix} \right) \\ \\ \therefore \text{Total amount collected} & = \$ 10 \phantom{.} 972.40 \end{align*}
(i)
\begin{align*} \underset{3 \times 4}{\left( \begin{matrix} 220 & 240 & 180 & 85 \\ 50 & 60 & 210 & 135 \\ 10 & 40 & 200 & 250 \end{matrix} \right)} \underset{4 \times 1}{\left( \begin{matrix} 15 \\ 13.5 \\ 12 \\ 10 \end{matrix} \right)} & = \left( \begin{matrix} 220 \times 15 + 240 \times 13.5 + 180 \times 12 + 85 \times 10 \\ 50 \times 15 + 60 \times 13.5 + 210 \times 12 + 135 \times 10 \\ 10 \times 15 + 40 \times 13.5 + 200 \times 12 + 250 \times 10 \end{matrix} \right) \\ & = \left( \begin{matrix} 9550 \\ 5430 \\ 5590 \end{matrix} \right) \\ \\ & \left( \begin{matrix} \$9550 \\ \$5430 \\ \$5590 \end{matrix} \right) \begin{matrix} \text{Total cost for men} \\ \text{Total cost for women} \\ \text{Total cost for children} \end{matrix} \end{align*}
(ii)
\begin{align*} \underset{3 \times 4}{\left( \begin{matrix} 220 & 240 & 180 & 85 \\ 50 & 60 & 210 & 135 \\ 10 & 40 & 200 & 250 \end{matrix} \right)} \underset{4 \times 1}{\left( \begin{matrix} 1 \\ 1 \\ 1 \\ 1 \end{matrix} \right)} & = \left( \begin{matrix} 220 \times 1 + 240 \times 1 + 180 \times 1 + 85 \times 1 \\ 50 \times 1 + 60 \times 1 + 210 \times 1 + 135 \times 1 \\ 10 \times 1 + 40 \times 1 + 200 \times 1 + 250 \times 1 \end{matrix} \right) \\ & = \left( \begin{matrix} 725 \\ 455 \\ 500 \end{matrix} \right) \\ \\ \text{It represents the total number} & \text{ of T-shirts ordered for men, women and children respectively} \end{align*}
(iii)
\begin{align*} \underset{1 \times 3}{\left( \begin{matrix} 1 & 1 & 1 \end{matrix} \right)} \underset{3 \times 4}{\left( \begin{matrix} 220 & 240 & 180 & 85 \\ 50 & 60 & 210 & 135 \\ 10 & 40 & 200 & 250 \end{matrix} \right)} & = \left( \begin{matrix} 220 + 50 + 10 & 240 + 60 + 40 & 180 + 210 + 200 & 85 + 135 + 250 \end{matrix} \right) \\ & = \left( \begin{matrix} 280 & 340 & 590 & 470\end{matrix} \right) \\ \\ \text{It represents the total number} & \text{ of T-shirts ordered for each size (XL, L, M, S)} \end{align*}
(iv)
\begin{align*} \underset{1 \times 3}{\left( \begin{matrix} 1 & 1 & 1 \end{matrix} \right)} \underset{3 \times 1}{\left( \begin{matrix} 9550 \\ 5430 \\ 5590 \end{matrix} \right)} & = \left( \begin{matrix} 1 \times 9550 + 1 \times 5430 + 1 \times 5590 \end{matrix} \right) \\ & = \left( \begin{matrix} 20 \phantom{.} 570 \end{matrix} \right) \\ \\ \therefore \text{Total cost} & = \$20 \phantom{.} 570 \end{align*}
(i)
\begin{align*} \left( \begin{matrix} 2 & 6 & 5 & 4 & 5 \\ 3 & 8 & 2 & 3 & 2 \\ 4 & 9 & 3 & 6 & 3 \\ 3 & 5 & 6 & 3 & 4 \end{matrix} \right) \left( \begin{matrix} 30 \\ 1.8 \\ 4.8 \\ 3.5 \\ 2.4 \end{matrix} \right) & = \left( \begin{matrix} 2 \times 30 + 6 \times 1.8 + 5 \times 4.8 + 4 \times 3.5 + 5 \times 2.4 \\ 3 \times 30 + 8 \times 1.8 + 2 \times 4.8 + 3 \times 3.5 + 2 \times 2.4 \\ 4 \times 30 + 9 \times 1.8 + 3 \times 4.8 + 6 \times 3.5 + 3 \times 2.4 \\ 3 \times 30 + 5 \times 1.8 + 6 \times 4.8 + 3 \times 3.5 + 4 \times 2.4 \end{matrix} \right) \\ & = \left( \begin{matrix} 120.8 \\ 129.3 \\ 178.8 \\ 147.9 \end{matrix} \right) \\ \\ & \left( \begin{matrix} \$ 120.80 \\ \$129.30 \\ \$178.80 \\ \$147.90 \end{matrix} \right) \begin{matrix} \text{Cost of Happiness hamper} \\ \text{Cost of Prosperity hamper} \\ \text{Cost of Bumper Harvest hamper} \\ \text{Cost of Good Fortune hamper} \end{matrix} \end{align*}
(ii)
\begin{align*} \left( \begin{matrix} 85 & 90 & 80 & 120 \end{matrix} \right) \left( \begin{matrix} 120.8 \\ 129.3 \\ 178.8 \\ 147.9 \end{matrix} \right) & = \left( \begin{matrix} 85 \times 120.8 + 90 \times 129.3 + 80 \times 178.8 + 120 \times 147.9 \end{matrix} \right) \\ & = \left( \begin{matrix} 53 \phantom{.} 957 \end{matrix} \right) \end{align*}
(iii)
\begin{align*} \left( \begin{matrix} 1.3 & 0 & 0 & 0 \\ 0 & 1.25 & 0 & 0 \\ 0 & 0 & 1.2 & 0 \\ 0 & 0 & 0 & 1.15 \end{matrix} \right) \left( \begin{matrix} 120.8 \\ 129.3 \\ 178.8 \\ 147.9 \end{matrix} \right) & = \left( \begin{matrix} 1.3 \times 120.8 + 0 + 0 + 0 \\ 0 + 1.25 \times 129.3 + 0 + 0 \\ 0 + 0 + 1.2 \times 178.8 + 0 \\ 0 + 0 + 0 + 1.15 \times 147.9 \end{matrix} \right) \\ & = \left( \begin{matrix} 157.04 \\ 161.625 \\ 214.56 \\ 170.085 \end{matrix} \right) \\ & \approx \left( \begin{matrix} 157.04 \\ 161.63 \\ 214.56 \\ 170.09 \end{matrix} \right) \end{align*}
(i)
\begin{align*} \left( \begin{matrix} 4 & 5 & 6 \\ 3 & 6 & 7 \\ 5 & 8 & 6 \\ 6 & 4 & 5 \end{matrix} \right) \left( \begin{matrix} 12 \\ 15 \\ 24 \end{matrix} \right) & = \left( \begin{matrix} 4 \times 12 + 5 \times 15 + 6 \times 24 \\ 3 \times 12 + 6 \times 15 + 7 \times 24 \\ 5 \times 12 + 8 \times 15 + 6 \times 24 \\ 6 \times 12 + 4 \times 15 + 5 \times 24 \end{matrix} \right) \\ & = \left( \begin{matrix} 267 \\ 294 \\ 324 \\ 252 \end{matrix} \right) \end{align*}
(ii)
\begin{align*} \left( \begin{matrix} 60 & 80 & 90 & 80 \end{matrix} \right) \left( \begin{matrix} 267 \\ 294 \\ 324 \\ 252 \end{matrix} \right) & = \left( \begin{matrix} 60 \times 267 + 80 \times 294 + 90 \times 324 + 80 \times 252 \end{matrix} \right) \\ & = \left( \begin{matrix} 88 \phantom{.} 860 \end{matrix} \right) \\ \\ \text{Total cost} & = 88 \phantom{.} 860 \text{ cents} \end{align*}
(i)
\begin{align*} & \left( \begin{matrix} 280 & 320 & 360 \end{matrix} \right) \left( \begin{matrix} 1.2 & 0 & 1.4 & 2.6 & 5.2 \\ 0 & 1.6 & 1.6 & 2.8 & 4.7 \\ 1.4 & 1.8 & 0 & 3 & 4.4 \end{matrix} \right) \\ & = \left( \begin{matrix} 280 \times 1.2 + 0 + 360 \times 1.4 & 0 + 320 \times 1.6 + 360 \times 1.8 & 280 \times 1.4 + 320 \times 1.6 + 0 & 280 \times 2.6 + 320 \times 2.8 + 360 \times 3 & 280 \times 5.2 + 320 \times 4.7 + 360 \times 4.4 \end{matrix} \right) \\ & = \left( \begin{matrix} 840 & 1160 & 904 & 2704 & 4544 \end{matrix} \right) \end{align*}
(ii)
\begin{align*} \left( \begin{matrix} 840 & 1160 & 904 & 2704 & 4544 \end{matrix} \right) \left( \begin{matrix} 12.5 \\ 5.2 \\ 7.8 \\ 1.4 \\ 1.1 \end{matrix} \right) & = \left( \begin{matrix} 840 \times 12.5 + 1160 \times 5.2 + 904 \times 7.8 + 2704 \times 1.4 + 4544 \times 1.1 \end{matrix} \right) \\ & = \left( \begin{matrix} 32 \phantom{.} 367.2 \end{matrix} \right) \end{align*}