Think! Additional Mathematics Textbook (10th edition) Solutions
Review Ex 11
Please email me if you spot any mistakes or have any questions.
Solutions
Click to display or to hide
(a) To find the x-intercept, let y = 0
\begin{align} y & = {2 - x \over x^2} \\ \\ \text{Let } & y = 0, \\ 0 & = {2 - x \over x^2} \\ 0 & = 2 - x \\ x & = 2 \\ \implies x & \text{-intercept is 2} \\ \\ y & = {2 \over x^2} - {x \over x^2} \\ & = 2x^{-2} - {1 \over x} \\ & = 2x^{-2} - x^{-1} \\ \\ {dy \over dx} & = 2(-2)x^{-3} - (-1)x^{-2} \\ & = -4x^{-3} + x^{-2} \\ & = -{4 \over x^3} + {1 \over x^2} \\ \\ \text{Let } & x = 2, \\ {dy \over dx} & = -{4 \over (2)^3} + {1 \over (2)^2} \\ & = -{1 \over 4} \end{align}
Note: For the differentiation part, you can use quotient rule as well
(b)
\begin{align} y & = {16x^3 - 1 \over x^2} \\ & = {16x^3 \over x^2} - {1 \over x^2} \\ & = 16x - x^{-2} \\ \\ {dy \over dx} & = 16 - (-2)x^{-3} \\ & = 16 + 2x^{-3} \\ & = 16 + {2 \over x^3} \\ \\ \text{Let } & x = 1, \\ {dy \over dx} & = 16 + {2 \over (1)^3} \\ & = 18 \end{align}
Note: For the differentiation part, you can use quotient rule as well
(c)
\begin{align} y & = \sqrt{x} + {1 \over \sqrt{x}} \\ & = x^{1 \over 2} + x^{-{1 \over 2}} \\ \\ {dy \over dx} & = {1 \over 2}x^{-{1 \over 2}} + \left(-{1 \over 2}\right) x^{-{3 \over 2}} \\ & = {1 \over 2} \left( 1 \over \sqrt{x} \right) - {1 \over 2} \left(1 \over \sqrt{x^3}\right) \\ & = {1 \over 2\sqrt{x}} - {1 \over 2\sqrt{x^3}} \\ \\ \text{Let } & x = 4, \\ {dy \over dx} & = {1 \over 2\sqrt{4}} - {1 \over 2\sqrt{(4)^3}} \\ & = {3 \over 16} \end{align}
(d)
\begin{align} y & = x^2 - 4x \\ \\ {dy \over dx} & = 2x - 4 \\ \\ \text{Substitute } & y = -4 \text{ into eqn of curve,} \\ -4 & = x^2 - 4x \\ 0 & = x^2 - 4x + 4 \\ 0 & = x^2 - 2(x)(2) + 2^2 \\ 0 & = (x - 2)^2 \phantom{00000000000} [(a - b)^2 = a^2 - 2ab + b^2] \\ 0 & = x - 2\\ 2 & = x \\ \implies \text{Coor} & \text{dinates of point is (2, -4)} \\ \\ \text{Substitute } & x = 2 \text{ into } {dy \over dx}, \\ {dy \over dx} & = 2(2) - 4 \\ & = 0 \end{align}
(e) At the y-intercept, x = 0
\begin{align} y & = 3 - 5x - 2x^2 \\ \\ {dy \over dx} & = -5 - 2(2)x \\ & = -5 - 4x \\ \\ \text{Let } & x = 0, \\ {dy \over dx} & = -5 - 4(0) \\ & = -5 \end{align}
(f)
\begin{align} y & = 2x^2 - 3x + 1 \\ \\ {dy \over dx} & = 2(2)x - 3 \\ & = 4x - 3 \\ \\ \text{Substitute } & y = 21 \text{ into eqn of curve,} \\ 21 & = 2x^2 - 3x + 1 \\ 0 & = 2x^2 - 3x - 20 \\ 0 & = (2x + 5)(x - 4) \end{align} \begin{align} 2x + 5 & = 0 && \text{ or } & x - 4 & = 0 \\ 2x & = -5 &&& x & = 4 \\ x & = -{5 \over 2} \\ \\ \text{Substitute } & \text{into } {dy \over dx}, &&& \text{Substitute } & \text{into } {dy \over dx}, \\ {dy \over dx} & = 4\left(-{5 \over 2}\right) - 3 &&& {dy \over dx} & = 4(4) - 3 \\ & = -13 &&& & =13 \end{align}
(a)
\begin{align} {d \over dx} (ax^2 + bx)^6 & = 6(ax^2 + bx)^5 . (2ax + b) \phantom{00000} [\text{Chain rule}] \end{align}
(b) Use product rule for the differentiation
\begin{align} u & = (2ax + b)^5 &&& v & = (5x^2 - ab)^6 \\ {du \over dx} & = 5(2ax + b)^4 . (2a) &&& {dv \over dx} & = 6(5x^2 - ab)^5 . (10x) \phantom{00000} [\text{Chain rule (for both)}] \\ & = 10a (2ax + b)^4 &&& & = 60x (5x^2 - ab)^5 \end{align} \begin{align} {d \over dx} (2ax + b)^5(5x^2 - ab)^6 & = (2ax + b)^5 [60x(5x^2 - ab)^5] + (5x^2 - ab)^6 [10a(2ax+b)^4] \\ & = 60x(2ax + b)^5 (5x^2 - ab)^5 + 10a(2ax + b)^4 (5x^2 - ab)^6 \\ & = (2ax + b)^4 (5x^2 - ab)^5 [60x(2ax + b) + 10a(5x^2 - ab)] \\ & = 10(2ax + b)^4 (5x^2 - ab)^5 [6x(2ax + b) + a(5x^2 - ab)] \\ & = 10(2ax + b)^4 (5x^2 - ab)^5 (12ax^2 + 6bx + 5ax^2 - a^2 b) \\ & = 10(2ax + b)^4 (5x^2 - ab)^5 (17ax^2 + 6bx - a^2 b) \end{align}
(c) Use quotient rule for the differentiation (product rule is possible as well)
\begin{align} u & = 2ax^2 + bx &&& v & = bx^3 - cx \\ {du \over dx} & = 4ax + b &&& {dv \over dx} & = 3bx^2 - c \end{align} \begin{align} {d \over dx} \left( 2ax^2 + bx \over bx^3 - cx \right) & = {(bx^3 - cx)(4ax + b) - (2ax^2 + bx)(3bx^2 - c) \over (bx^3 - cx)^2 } \\ & = { 4abx^4 + b^2 x^3 - 4acx^2 - bcx - (6abx^4 - 2acx^2 + 3b^2x^3 - bcx) \over (bx^3 - cx)^2} \\ & = { 4abx^4 + b^2 x^3 - 4acx^2 - bcx - 6abx^4 + 2acx^2 - 3b^2x^3 + bcx \over (bx^3 - cx)^2} \\ & = { -2abx^4 - 2b^2 x^3 - 2acx^2 \over (bx^3 - cx)^2} \\ & = { -(2abx^4 + 2b^2 x^3 + 2acx^2) \over (bx^3 - cx)^2} \\ & = - { 2abx^4 + 2b^2 x^3 + 2acx^2 \over (bx^3 - cx)^2} \end{align}
(d) Use quotient rule for the differentiation (product rule is possible as well)
\begin{align} u & = ax + b &&& v & = cx^2 - a^2 \\ {du \over dx} & = a &&& {dv \over dx} & = 2cx \end{align} \begin{align} {d \over dx} \left( {ax + b \over cx^2 - a^2} \right) & = {(cx^2 - a^2)(a) - (ax + b)(2cx) \over (cx^2 - a^2)^2 } \\ & = {acx^2 - a^3 - 2acx^2 - 2bcx \over (cx^2 - a^2)^2} \\ & = {-acx^2 - a^3 - 2bcx \over (cx^2 - a^2)^2} \\ & = {-(acx^2 + a^3 + 2bcx) \over (cx^2 - a^2)^2} \\ & = -{acx^2 + a^3 + 2bcx \over (cx^2 - a^2)^2} \end{align}
(a)
\begin{align} \text{Let } y & = (5x - 4)^5 \\ \\ {dy \over dx} & = 5(5x - 4)^4 . (5) \phantom{00000} [\text{Chain rule}] \\ & = 25(5x - 4)^4 \\ \\ {d^2 y \over d x^2} & = 25(4)(5x - 4)^3 . (5) \phantom{00000} [\text{Chain rule}] \\ & = 500(5x - 4)^3 \end{align}
(b)
\begin{align}
\text{Let } y & = \sqrt{2x^3 + 5} \\
& = (2x^3 + 5)^{1 \over 2} \\
\\
{dy \over dx} & = {1 \over 2}(2x^3 + 5)^{-{1 \over 2}}. (6x^2) \phantom{00000} [\text{Chain rule}] \\
& = 3x^2 (2x^3 + 5)^{-{1 \over 2}} \\
& = {3x^2 \over \sqrt{2x^3 +5}}
\end{align}
\begin{align}
u & = 3x^2 &&& v & = \sqrt{2x^3 + 5} \\
& &&& & = (2x^3 + 5)^{1 \over 2} \\
{du \over dx} & = 6x &&& {dv \over dx} & = {1 \over 2} (2x^3 + 5)^{-{1 \over 2}} . (6x^2) \\
& &&& & = (3x^2) (2x^3 + 5)^{-{1 \over 2}} \\
& &&& & = {3x^2 \over \sqrt{2x^3 + 5}}
\end{align}
\begin{align}
{d^2 y \over dx^2} & = {(\sqrt{2x^3 + 5})(6x) - (3x^2) \left( {3x^2 \over \sqrt{2x^3 + 5}} \right) \over (\sqrt{2x^3 + 5})^2} \phantom{00000} [\text{Quotient rule}] \\
& = { {6x\sqrt{2x^3 +5} \over 1} - {9x^4 \over \sqrt{2x^3 + 5}} \over 2x^3 + 5} \\
& = { {6x\sqrt{2x^3 +5}(\sqrt{2x^3 + 5}) \over \sqrt{2x^3 + 5}} - {9x^4 \over \sqrt{2x^3 + 5}} \over 2x^3 + 5} \\
& = { {6x(2x^3 + 5) - 9x^4 \over \sqrt{2x^3 + 5}} \over 2x^3 + 5} \\
& = { 6x(2x^3 + 5) - 9x^4 \over (\sqrt{2x^3 + 5})(2x^3 + 5)} \\
& = { 12x^4 + 30x - 9x^4 \over (2x^3 + 5)^{1 \over 2} (2x^3 + 5) } \\
& = {3x^4 + 30x \over (2x^3 + 5)^{3 \over 2} } \\
& = {3x^4 + 30x \over \sqrt{(2x^3 + 5)^3} }
\end{align}
(c)
\begin{align}
\text{Let } y & = (5x^2 + 3)^{3 \over 2} \\
\\
{dy \over dx} & = {3 \over 2}(5x^2 + 3)^{1 \over 2} . (10x) \phantom{00000} [\text{Chain rule}] \\
& = 15x (5x^2 + 3)^{1 \over 2} \\
& = 15x \sqrt{5x^2 + 3}
\end{align}
\begin{align}
u & = 15x &&& v & = \sqrt{5x^2 + 3} \\
& &&& &= (5x^2 + 3)^{1 \over 2} \\
{du \over dx} & = 15 &&& {dv \over dx} & = {1 \over 2} (5x^2 + 3)^{-{1 \over 2}} . (10x) \\
& &&& & = 5x (5x^2 + 3)^{-{1 \over 2}} \\
& &&& & = {5x \over \sqrt{5x^2 + 3}}
\end{align}
\begin{align}
{d^2 y \over dx^2} & = (15x) \left({5x \over \sqrt{5x^2 + 3}}\right) + (\sqrt{5x^2 + 3})(15) \phantom{00000} [\text{Product rule}] \\
& = {75x^2 \over \sqrt{5x^2 + 3}} + {15 \sqrt{5x^2 + 3} \over 1} \\
& = {75x^2 \over \sqrt{5x^2 + 3}} + {15 \sqrt{5x^2 + 3} (\sqrt{5x^2 + 3}) \over \sqrt{5x^2 + 3}} \\
& = {75x^2 + 15(5x^2 + 3) \over \sqrt{5x^2 + 3}} \\
& = {75x^2 + 75x^2 + 45 \over \sqrt{5x^2 + 3}} \\
& = {150x^2 + 45 \over \sqrt{5x^2 + 3}}
\end{align}
(d)
\begin{align}
\text{Let } y & = (2 + 9x^2)^{1 \over 3} \\
\\
{dy \over dx} & = {1 \over 3}(2 + 9x^2)^{-{2 \over 3}} . (18x) \phantom{00000} [\text{Chain rule}] \\
& = 6x (2 + 9x^2)^{-{2 \over 3}} \\
& = {6x \over \sqrt[3]{(2 + 9x^2)^2}}
\end{align}
\begin{align}
u & = 6x &&& v & = (2 + 9x^2)^{-{2 \over 3}} \\
{du \over dx} & = 6 &&& {dv \over dx} & = -{2 \over 3} (2 + 9x^2)^{-{5 \over 3}} . (18x) \\
& &&& & = -12x (2 + 9x^2)^{-{5 \over 3}}
\end{align}
\begin{align}
{d^2 y \over dx^2} & = (2 + 9x^2)^{-{2 \over 3}}(6) + (6x)[-12x (2 + 9x^2)^{-{5 \over 3}}] \phantom{00000} [\text{Product rule}] \\
& = 6(2 + 9x^2)^{-{2 \over 3}} - 72x^2 (2 + 9x^2)^{-{5 \over 3}} \\
& = 6(2 + 9x^2)^{-{2 \over 3}} \left[ 1 - 12x^2 (2 + 9x^2)^{-1} \right] \\
& = {6 \over (2 + 9x^2)^{2 \over 3}} \left( 1 - {12x^2 \over 2 + 9x^2} \right) \\
& = {6 \over (2 + 9x^2)^{2 \over 3}} \left( {2 + 9x^2 \over 2 + 9x^2} - {12x^2 \over 2 + 9x^2} \right) \\
& = {6 \over (2 + 9x^2)^{2 \over 3}} \left( {2 - 3x^2 \over 2 + 9x^2} \right) \\
& = {6(2 - 3x^2) \over (2 + 9x^2)^{5 \over 3}} \\
& = {12 - 18x^2 \over \sqrt[3]{(2 + 9x^2)^5}}
\end{align}
(e)
\begin{align} \text{Let } y & = {3 \over (3x - 5)^3} \\ & = 3(3x - 5)^{-3} \\ \\ {dy \over dx} & = 3(-3)(3x - 5)^{-4} . (3) \phantom{00000} [\text{Chain rule}] \\ & = -27 (3x - 5)^{-4} \\ & = -{27 \over (3x - 5)^4} \\ \\ {d^2 y \over dx^2} & = -27 (-4) (3x - 5)^{-5} . (3) \phantom{00000} [\text{Chain rule}] \\ & = 324 (3x - 5)^{-5} \\ & = {324 \over (3x - 5)^5} \end{align}
(f) Use quotient rule for the differentiation (product rule is possible as well)
$$ \text{Let } y = {3x - 7 \over \sqrt{2x + 9}} $$
\begin{align}
u & = 3x - 7 &&& v & = \sqrt{2x + 9} \\
& &&& & = (2x + 9)^{1 \over 2} \\
{du \over dx} & = 3 &&& {dv \over dx} & = {1 \over 2} (2x + 9)^{-{1 \over 2}} . (2) \\
& &&& & = (2x + 9)^{-{1 \over 2}} \\
& &&& & = {1 \over \sqrt{2x + 9}}
\end{align}
\begin{align}
{dy \over dx} & = {(\sqrt{2x + 9})(3) - (3x - 7)\left({1 \over \sqrt{2x + 9}}\right) \over (\sqrt{2x + 9})^2} \phantom{00000} [\text{Quotient rule}] \\
& = {{3\sqrt{2x + 9} \over 1} - {3x - 7 \over \sqrt{2x + 9}} \over 2x + 9 } \\
& = {{3\sqrt{2x + 9}(\sqrt{2x + 9}) \over \sqrt{2x + 9}} - {3x - 7 \over \sqrt{2x + 9}} \over 2x + 9 } \\
& = {{3(2x + 9) - (3x - 7) \over \sqrt{2x + 9}} \over 2x + 9} \\
& = {3(2x + 9) - (3x - 7) \over (\sqrt{2x + 9})(2x + 9)} \\
& = {6x + 27 - 3x + 7 \over (2x + 9)^{1 \over 2} (2x + 9)} \\
& = {3x + 34 \over (2x + 9)^{3 \over 2} } \\
& = {3x + 34 \over \sqrt{(2x + 9)^3}}
\end{align}
\begin{align}
u & = 3x + 34 &&& v & = \sqrt{(2x + 9)^3} \\
& &&& & = (2x + 9)^{3 \over 2} \\
{du \over dx} & = 3 &&& {dv \over dx} & = {3 \over 2} (2x + 9)^{1 \over 2} . (2) \\
& &&& & = 3(2x + 9)^{1 \over 2}
\end{align}
\begin{align}
{d^2 y \over dx^2} & = {(2x + 9)^{3 \over 2}(3) - (3x + 34)[3(2x + 9)^{1 \over 2}] \over [\sqrt{(2x + 9)^3}]^2 } \phantom{00000} [\text{Quotient rule}] \\
& = {3(2x + 9)^{3 \over 2} - 3(3x + 34)(2x + 9)^{1 \over 2} \over (2x + 9)^3 } \\
& = {3(2x + 9)^{1 \over 2} [(2x + 9) - (3x + 34)] \over (2x + 9)^3 } \\
& = {3(2x + 9)^{1 \over 2} (2x + 9 - 3x - 34) \over (2x + 9)^3 } \\
& = {3(2x + 9)^{1 \over 2} (- x - 25) \over (2x + 9)^3 } \\
& = {3(-x - 25) \over (2x + 9)^{-{1 \over 2}} (2x + 9)^3} \\
& = {-3x - 75 \over (2x + 9)^{5 \over 2}} \\
& = {-(3x + 75) \over \sqrt{(2x + 9)^5}} \\
& = -{3x + 75 \over \sqrt{(2x + 9)^5}}
\end{align}
\begin{align} y & = {x^2 - 1 \over x} \\ & = {x^2 \over x} - {1 \over x} \\ & = x - x^{-1} \\ \\ {dy \over dx} & = 1 - (-1)x^{-2} \\ & = 1 + x^{-2} \\ & = 1 + {1 \over x^2} \\ \\ \text{Let } & {dy \over dx} = 5, \\ 5 & = 1 + {1 \over x^2} \\ 4 & = {1 \over x^2} \\ 4x^2 & = 1 \\ x^2 & = {1 \over 4} \\ x & = \pm \sqrt{1 \over 4} \\ & = \pm {1 \over 2} \end{align} \begin{align} \text{Substitute } & x = {1 \over 2} \text{ into eqn of curve,} &&& \text{Substitute } & x = -{1 \over 2} \text{ into eqn of curve,} \\ y & = \left(1 \over 2\right) - \left(1 \over 2\right)^{-1} &&& y & = \left(-{1 \over 2}\right) - \left(-{1 \over 2}\right)^{-1} \\ & = -{3 \over 2} &&& & = {3 \over 2} \\ \\ \therefore & \phantom{.} \left({1 \over 2}, -{3 \over 2}\right) &&& \therefore & \phantom{.} \left(-{1 \over 2}, {3 \over 2} \right) \end{align}
\begin{align} y & = ax^3 + bx \\ \\ \text{Using } & (3 , 1), \\ 1 & = a(3)^3 + b(3) \\ 1 & = 27a + 3b \phantom{000} \text{--- (1)} \\ \\ {dy \over dx} & = a(3)x^2 + b \\ & = 3ax^2 + b \\ \\ \text{Let } & x = 3 \text{ and } {dy \over dx} = 3, \\ 3 & = 3a(3)^2 + b \\ 3 & = 3a(9) + b \\ 3 & = 27a + b \\ \\ b & = 3 - 27a \phantom{000} \text{--- (2)} \\ \\ \text{Substitute } & \text{(2) into (1),} \\ 1 & = 27a + 3(3 - 27a) \\ 1 & = 27a + 9 - 81a \\ 81a - 27a & = 9 - 1 \\ 54a & = 8 \\ a & = {8 \over 54} \\ & = {4 \over 27} \\ \\ \text{Substitute } & a = {4 \over 27} \text{ into (2),} \\ b & = 3 - 27 \left(4 \over 27\right) \\ & = -1 \\ \\ \therefore a & = {4 \over 27}, b = -1 \end{align}
\begin{align} A & = 4r^3 - 3r^2 - 18r + 5 \\ \\ {dA \over dr} & = 4(3)r^2 - 3(2)r - 18 \\ & = 12r^2 - 6r - 18 \\ \\ {dA \over dr} & < 0 \\ 12r^2 - 6r - 18 & < 0 \\ 2r^2 - r - 3 & < 0 \\ (r + 1)(2r - 3) & < 0 \end{align}
$$ -1 < r < {3 \over 2} $$
The coordinates of P and Q can be found by solving simultaneous equations (using the equations of line & curve).
Substitute the x-coordinates of each point into the gradient function, ${dy \over dx}$, in order to find the gradient at the respective point.
\begin{align} \text{Eqn of curve: } \phantom{000} xy + 10 & = 0 \\ xy & = -10 \\ y & = -{10 \over x} \\ y & = -10 x^{-1} \\ \\ {dy \over dx} & = -10(-1)x^{-2} \\ & = 10x^{-2} \\ & = {10 \over x^2} \\ \\ \\ \text{Eqn of curve: } \phantom{000} xy + 10 & = 0 \phantom{000} \text{--- (1)} \\ \\ \text{Eqn of line: } \phantom{000} 2x + 3y & = 7 \\ 2x & = 7 - 3y \\ x & = {7 \over 2} - {3 \over 2}y \phantom{000} \text{--- (2)} \\ \\ \text{Substitute } & \text{(2) into (1),} \\ \left({7 \over 2} - {3 \over 2}y \right) y + 10 & = 0 \\ {7 \over 2}y - {3 \over 2}y^2 + 10 & = 0 \\ -{3 \over 2}y^2 + {7 \over 2}y + 10 & = 0 \\ -3y^2 + 7y + 20 & = 0 \\ 3y^2 - 7y - 20 & = 0 \\ (3y + 5)(y - 4) & = 0 \end{align} \begin{align} 3y + 5 & = 0 && \text{ or } & y - 4 & =0 \\ 3y & = -5 &&& y & = 4 \\ y & = -{5 \over 3} \\ \\ \text{Substitute } & \text{into (2),} &&& \text{Substitute } & \text{into (2),} \\ x & = {7 \over 2} - {3 \over 2}\left(-{5 \over 3}\right) &&& x & = {7 \over 2} - {3 \over 2}(4) \\ & = 6 &&& & = -{5 \over 2} \\ \\ \therefore & \phantom{.} P\left(6, -{5 \over 3}\right) &&& \therefore & \phantom{.} Q\left(-{5 \over 2}, 4\right) \\ \\ \text{Substitute } & x = 6 \text{ into } {dy \over dx}, &&& \text{Substitute } & x = -{5 \over 2} \text{ into } {dy \over dx}, \\ {dy \over dx} & = {10 \over (6)^2} &&& {dy \over dx} & = {10 \over \left(-{5 \over 2}\right)^2} \\ & = {5 \over 18} &&& & = {8 \over 5} \end{align}
(i)
\begin{align} y & = 10 - (2 - x)^4 \\ \\ {dy \over dx} & = 0 - 4(2 - x)^3 . (-1) \phantom{00000} [\text{Chain rule}] \\ & = 4(2 - x)^3 \\ \\ \text{Let } & {dy \over dx} = 0, \\ 0 & = 4(2 - x)^3 \\ 0 & = (2 - x)^3 \\ 0 & = 2 - x \\ x & = 2 \\ \\ \therefore a & = 2 \\ \\ \text{For } & x < 2, \\ (2 - x)^3 & > 0 \\ \implies {dy \over dx} & > 0 \\ \\ \therefore y \text{ is in} & \text{creasing} \end{align}
(ii)
\begin{align} {dy \over dx} & = 0 - 4(2 - x)^3 . (-1) \phantom{00000} [\text{Chain rule}] \\ & = 4(2 - x)^3 \\ \\ \text{For } & x > 2, \\ (2 - x)^3 & < 0 \\ \implies {dy \over dx} & < 0 \\ \\ \therefore y \text{ is de} & \text{creasing} \end{align}
\begin{align} y & = x^3 + ax^2 + bx + 6 \\ \\ {dy \over dx} & = 3x^2 + 2ax + b \\ \\ {dy \over dx} & < 0 \phantom{000000} [\text{Decreasing function}] \\ 3x^2 + 2ax + b & < 0 \\ \\ \text{Since } y & \text{ is a decreasing function for } 2 < x < 9, \end{align}
\begin{align} (x - 2)(x - 9) & < 0 \\ x^2 - 9x - 2x + 18 & < 0 \\ x^2 - 11x + 18 & < 0 \\ 3x^2 - 33x + 54 & < 0 \\ \\ \text{Comparing with } 3x^2 & \phantom{.} + 2ax + b < 0, \\ b = 54 \phantom{00000} 2a & = -33 \\ a & = -{33 \over 2} \\ & = -16.5 \end{align}
Note that time, $x$ minutes, is greater or equals to 0
\begin{align} T & = \sqrt[3]{x} - {100 \over x + 2} + 75 \\ & = x^{1 \over 3} - 100(x + 2)^{-1} + 75 \\ \\ {dT \over dx} & = {1 \over 3}x^{-{2 \over 3}} - 100(-1)(x + 2)^{-2} \\ & = {1 \over 3} \left(1 \over \sqrt[3]{x^2}\right) + 100(x + 2)^{-2} \\ & = {1 \over 3\sqrt[3]{x^2}} + {100 \over (x + 2)^2} \\ \\ \text{For } x & > 0, \phantom{.} \sqrt[3]{x^2} > 0 \text{ and } (x + 2)^2 > 0 \\ \\ \implies {1 \over 3\sqrt[3]{x^2}} & + {100 \over (x + 2)^2} > 0 \\ & \phantom{000000.} {dT \over dx} > 0 \\ \\ \therefore \text{The func} & \text{tion is an increasing function} \end{align}
Note that time, $t$ months, is greater or equals to 0
\begin{align} g(t) & = {20 \over 3(2t + 1)} \\ & = {20 \over 3} (2t + 1)^{-1} \\ \\ g'(t) & = {20 \over 3} (-1) (2t + 1)^{-2} . (2) \phantom{00000} [\text{Chain rule}] \\ & = -{40 \over 3} (2t + 1)^{-2} \\ & = -{40 \over 3} \left[ 1 \over (2t + 1)^2 \right] \\ & = -{40 \over 3(2t + 1)^2} \\ \\ \text{For } t & \ge 0, (2t + 1)^2 > 0 \\ \\ \implies &-{40 \over 3(2t + 1)^2} < 0 \\ & \phantom{0000000.} g'(t) < 0 \phantom{000000} [g(t) \text{ is a decreasing function}] \\ \\ \text{As time} & \text{ goes on, the population of the town will decrease} \end{align}