S3 E Maths Textbook Solutions >> think! Mathematics Textbook 3A (8th Edition) Chapters 1 & 2 Solutions >>
Ex 1D
Please email me if you spot any mistakes or have any questions.
Solutions
Click to display or to hide
(a)
\begin{align} y & = (x + 1)(x + 3) \\ y & = x^2 + 3x + x + 3 \\ y & = x^2 + 4x + 3 \phantom{0000000} [\text{Minimum curve } (\cup)] \\ \\ \text{Let } & x = 0, \\ y & = (0 + 1)(0 + 3) \\ y & = 3 \phantom{0000000000000000000} [y \text{-intercept}] \\ \\ \text{Let } & y = 0, \\ 0 & = (x + 1)(x + 3) \\ \\ x & = -1 \text{ or } x = - 3 \phantom{000000000} [x \text{-intercepts}] \\ \\ \text{Line of symmetry, } x & = {-1 + (-3) \over 2} \\ x & = -2 \\ \\ \text{Let } & x = -2, \\ y & = (-2 + 1)(-2 + 3) \\ y & = -1 \\ \\ \text{Minimum point: } & (-2, -1) \\ \end{align}
(b)
\begin{align} y & = (x - 2)(x + 4) \\ y & = x^2 + 4x - 2x - 8 \\ y & = x^2 + 2x - 8 \phantom{0000000} [\text{Minimum curve } (\cup)] \\ \\ \text{Let } & x = 0, \\ y & = (0 - 2)(0 + 4) \\ y & = -8 \phantom{0000000000000000000} [y \text{-intercept}] \\ \\ \text{Let } & y = 0, \\ 0 & = (x - 2)(x + 4) \\ \\ x & = 2 \text{ or } x = -4 \phantom{000000000000} [x \text{-intercepts}] \\ \\ \text{Line of symmetry, } x & = {2 + (-4) \over 2} \\ x & = -1 \\ \\ \text{Let } & x = -1, \\ y & = (-1 -2)(-1 + 4) \\ y & = -9 \\ \\ \text{Minimum point: } & (-1, -9) \end{align}
(c)
\begin{align} y & = -(x + 1)(x - 5) \\ y & = -(x^2 - 5x + x - 5) \\ y & = -(x^2 - 4x - 5) \\ y & = - x^2 + 4x + 5 \phantom{0000000} [\text{Maximum curve } (\cap)] \\ \\ \text{Let } & x = 0, \\ y & = -(0 + 1)(0 - 5) \\ y & = 5 \phantom{0000000000000000000} [y \text{-intercept}] \\ \\ \text{Let } & y = 0, \\ 0 & = -(x + 1)(x - 5) \\ \\ x & = -1 \text{ or } x = 5 \phantom{00000000000} [x \text{-intercepts}] \\ \\ \text{Line of symmetry, } x & = {-1 + 5 \over 2} \\ x & = 2 \\ \\ \text{Let } & x = 2, \\ y & = -(2 + 1)(2 - 5) \\ y & = 9 \\ \\ \text{Maximum point: } & (2, 9) \end{align}
(d)
\begin{align} y & = -(x - 1)(x + 6) \\ y & = -(x^2 + 6x - x - 6) \\ y & = -(x^2 + 5x - 6) \\ y & = - x^2 - 5x + 6 \phantom{0000000} [\text{Maximum curve } (\cap)] \\ \\ \text{Let } & x = 0, \\ y & = -(0 - 1)(0 + 6) \\ y & = 6 \phantom{0000000000000000000} [y \text{-intercept}] \\ \\ \text{Let } & y = 0, \\ 0 & = -(x - 1)(x + 6) \\ \\ x & = 1 \text{ or } x = -6 \phantom{00000000000} [x \text{-intercepts}] \\ \\ \text{Line of symmetry, } x & = {1 + (-6) \over 2} \\ x & = -2.5 \\ \\ \text{Let } & x = -2.5, \\ y & = -(-2.5 - 1)(-2.5 + 6) \\ y & = 12.25 \\ \\ \text{Maximum point: } & (-2.5, 12.25) \end{align}
(e)
\begin{align} y & = (3 - x)(x + 2) \\ y & = 3x + 6 - x^2 - 2x \\ y & = - x^2 + x + 6 \phantom{0000000} [\text{Maximum curve } (\cap)] \\ \\ \text{Let } & x = 0, \\ y & = (3 - 0)(0 + 2) \\ y & = 6 \phantom{0000000000000000000} [y \text{-intercept}] \\ \\ \text{Let } & y = 0, \\ 0 & = (3 - x)(x + 2) \\ \\ x & = 3 \text{ or } x = -2 \phantom{00000000000} [x \text{-intercepts}] \\ \\ \text{Line of symmetry, } x & = {3 + (-2) \over 2} \\ x & = 0.5 \\ \\ \text{Let } & x = 0.5, \\ y & = (3 - 0.5)(0.5 + 2) \\ y & = 6.25 \\ \\ \text{Maximum point: } & (0.5, 6.25) \end{align}
(f)
\begin{align} y & = (2 - x)(4 - x) \\ y & = 8 - 2x - 4x + x^2 \\ y & = x^2 - 6x + 8 \phantom{0000000} [\text{Minimum curve } (\cup)] \\ \\ \text{Let } & x = 0, \\ y & = (2 - 0)(4 - 0) \\ y & = 8 \phantom{0000000000000000000} [y \text{-intercept}] \\ \\ \text{Let } & y = 0, \\ 0 & = (2 - x)(4 - x) \\ \\ x & = 2 \text{ or } x = 4 \phantom{000000000000} [x \text{-intercepts}] \\ \\ \text{Line of symmetry, } x & = {2 + 4 \over 2} \\ x & = 3 \\ \\ \text{Let } & x = 3, \\ y & = (2 - 3)(4 - 3) \\ y & = -1 \\ \\ \text{Minimum point: } & (3, -1) \end{align}
(a)
\begin{align} y & = x^2 - 4 \phantom{0000000} [\text{Minimum curve } (\cup)] \\ y & = (x - 0)^2 - 4 \\ \\ \text{Minimum point: } & (0, -4) \\ \\ \text{Line of symmetry: } & x = 0 \\ \\ \text{Let } & x = 0, \\ y & = (0)^2 - 4 \\ y & = - 4 \phantom{000000000000000000} [y \text{-intercept}] \end{align}
(b)
\begin{align} y & = -x^2 + 6 \phantom{0000000} [\text{Maximum curve } (\cap)] \\ y & = -(x - 0)^2 + 6 \\ \\ \text{Maximum point: } & (0, 6) \\ \\ \text{Line of symmetry: } & x = 0 \\ \\ \text{Let } & x = 0, \\ y & = -(0)^2 + 6 \\ y & = 6 \phantom{000000000000000000} [y \text{-intercept}] \end{align}
(c)
\begin{align} y & = (x - 3)^2 - 2 \phantom{0000000} [\text{Minimum curve } (\cup)] \\ \\ \text{Minimum point: } & (3, -2) \\ \\ \text{Line of symmetry: } & x = 3 \\ \\ \text{Let } & x = 0, \\ y & = (0 - 3)^2 - 2 \\ y & = 7 \phantom{000000000000000000} [y \text{-intercept}] \end{align}
(d)
\begin{align} y & = (x + 1)^2 - 3 \phantom{0000000} [\text{Minimum curve } (\cup)] \\ y & = [x - (-1)]^2 - 3 \\ \\ \text{Minimum point: } & (-1, -3) \\ \\ \text{Line of symmetry: } & x = -1 \\ \\ \text{Let } & x = 0, \\ y & = (0 + 1)^2 - 3 \\ y & = -2 \phantom{000000000000000000} [y \text{-intercept}] \end{align}
(e)
\begin{align} y & = -(x + 2)^2 + 3 \phantom{0000000} [\text{Maximum curve } (\cap)] \\ y & = -[x - (-2)]^2 + 3 \\ \\ \text{Maximum point: } & (-2, 3) \\ \\ \text{Line of symmetry: } & x = -2 \\ \\ \text{Let } & x = 0, \\ y & = -(0 + 2)^2 + 3 \\ y & = -1 \phantom{000000000000000000} [y \text{-intercept}] \end{align}
(f)
\begin{align} y & = -(x - 4)^2 + 5 \phantom{0000000} [\text{Maximum curve } (\cap)] \\ \\ \text{Maximum point: } & (4, 5) \\ \\ \text{Line of symmetry: } & x = 4 \\ \\ \text{Let } & x = 0, \\ y & = - (0 - 4)^2 + 5 \\ y & = -11 \phantom{000000000000000000} [y \text{-intercept}] \end{align}
(i)
\begin{align} x^2 + {3 \over 4}x & = x\left(x + {3 \over 4}\right) \end{align}
(ii)
\begin{align} y & = x^2 + {3 \over 4}x \phantom{0000000} [\text{Minimum curve } (\cup)] \\ y & = x \left(x + {3 \over 4}\right) \\ \\ \text{Let } & x = 0, \\ y & = (0)\left(0 + {3 \over 4}\right) \\ y & = 0 \phantom{000000000000000000} [y \text{-intercept}] \\ \\ \text{Let } & y = 0, \\ 0 & = x \left(x + {3 \over 4}\right) \\ \\ x & = 0 \text{ or } x = -{3 \over 4} \phantom{000000000} [x \text{-intercepts}] \\ \\ \text{Line of symmetry, } x & = { 0 + \left(-{3 \over 4}\right) \over 2} \\ x & = -{3 \over 8} \\ \\ \text{Let } & x = -{3 \over 8}, \\ y & = \left(-{3 \over 8}\right) \left(-{3 \over 8} + {3 \over 4}\right) \\ y & = -{9 \over 64} \\ \\ \text{Minimum point: } & \left(-{3 \over 8}, -{9 \over 64}\right) \end{align}
\begin{align} y & = -(x^2 - x) \\ y & = -x^2 + x \phantom{0000000} [\text{Maximum curve } (\cap)] \\ \\ \text{Let } & x = 0, \\ y & = -(0)^2 + (0) \\ y & = 0 \phantom{000000000000000000} [y \text{-intercept}] \\ \\ \text{Let } & y = 0, \\ 0 & = -x^2 + x \\ 0 & = -x(x - 1) \\ \\ x & = 0 \text{ or } x = 1 \phantom{00000000000} [x \text{-intercepts}] \\ \\ \text{Line of symmetry, } x & = { 0 + 1 \over 2} \\ x & = 0.5 \\ \\ \text{Let } & x = 0.5, \\ y & = -(0.5)^2 + (0.5) \\ y & = 0.25 \\ \\ \text{Maximum point: } & (0.5, 0.25) \end{align}
(i)
\begin{align} x^2 + x - 6 & = (x - 2)(x + 3) \end{align}
(ii)
\begin{align} y & = x^2 + x - 6 \phantom{0000000} [\text{Minimum curve } (\cup)] \\ \\ \text{Let } & x = 0, \\ y & = (0)^2 + (0) - 6 \\ y & = -6 \phantom{000000000000000000} [y \text{-intercept}] \\ \\ \text{Let } & y = 0, \\ 0 & = x^2 + x - 6 \\ 0 & = (x - 2)(x + 3) \phantom{000000000} [\text{Use result from (i)}] \\ \\ x & = 2 \text{ or } x = -3 \phantom{00000000000} [x \text{-intercepts}] \\ \\ \text{Line of symmetry, } x & = { 2 + (-3) \over 2} \\ x & = -0.5 \\ \\ \text{Let } & x = -0.5, \\ y & = (-0.5)^2 + (-0.5) - 6 \\ y & = -6.25 \\ \\ \text{Minimum point: } & (-0.5, -6.25) \end{align}
\begin{align} y & = x^2 - 4x + 3 \phantom{0000000} [\text{Minimum curve } (\cup)] \\ \\ \text{Let } & x = 0, \\ y & = (0)^2 - 4(0) + 3 \\ & = 3 \phantom{000000000000000000} [y \text{-intercept}] \\ \\ \text{Let } & y = 0, \\ 0 & = x^2 - 4x + 3 \\ 0 & = (x - 1)(x - 3) \\ \\ x & = 1 \text{ or } x = 3 \phantom{00000000000} [x \text{-intercepts}] \\ \\ \text{Line of symmetry, } x & = { 1 + 3 \over 2} \\ x & = 2 \\ \\ \text{Let } & x = 2, \\ y & = (2)^2 - 4(2) + 3 \\ y & = -1 \\ \\ \text{Minimum point: } & (2, -1) \end{align}
(a)(i)
\begin{align} y & = -x^2 - 7x - 15 \\ & = -(x^2 + 7x) - 15 \\ & = - \left[ x^2 + 7x + \left(7 \over 2\right)^2 - \left(7 \over 2\right)^2 \right] - 15 \phantom{00000000} [\text{Complete the square}] \\ & = - ( x^2 + 7x + 3.5^2 - 3.5^2 ) - 15 \\ & = - [(x + 3.5)^2 - 12.25] - 15 \\ & = - (x + 3.5)^2 + 12.25 - 15 \\ & = - (x + 3.5)^2 - 2.75 \end{align}
(a)(ii)
\begin{align} y & = - x^2 - 7x - 15 \phantom{0000000} [\text{Maximum curve } (\cap)] \\ y & = - (x + 3.5)^2 - 2.75 \\ y & = - [x - (-3.5)]^2 - 2.75 \\ \\ \text{Maximum point: } & (-3.5, -2.75) \\ \\ \text{Let } & x = 0, \\ y & = - (0 + 3.5)^2 - 2.75 \\ y & = -15 \phantom{000000000000000000} [y \text{-intercept}] \end{align}
(b)(i)
\begin{align} y & = x^2 - 3x + 4 \\ & = x^2 - 3x + \left(3 \over 2\right)^2 - \left(3 \over 2\right)^2 + 4 \phantom{00000000} [\text{Complete the square}] \\ & = x^2 - 3x + 1.5^2 - 1.5^2 + 4 \\ & = (x - 1.5)^2 - 2.25 + 4 \\ & = (x - 1.5)^2 + 1.75 \end{align}
(b)(ii)
\begin{align} y & = x^2 - 3x + 4 \phantom{0000000} [\text{Minimum curve } (\cup)] \\ y & = (x - 1.5)^2 + 1.75 \\ \\ \text{Minimum point: } & (1.5, 1.75) \\ \\ \text{Let } & x = 0, \\ y & = (0 - 1.5)^2 + 1.75 \\ y & = 4 \phantom{000000000000000000} [y \text{-intercept}] \end{align}
(a)(i)
\begin{align} y & = - x^2 - 10x - 25 \\ & = -(x^2 + 10x) - 25 \\ & = - \left[ x^2 + 10x + \left(10 \over 2\right)^2 - \left(10 \over 2\right)^2 \right] - 25 \phantom{00000000} [\text{Complete the square}] \\ & = - ( x^2 + 10x + 5^2 - 5^2 ) - 25 \\ & = - [(x + 5)^2 - 25] - 25 \\ & = - (x + 5)^2 + 25 - 25 \\ & = - (x + 5)^2 \end{align}
(a)(ii)
\begin{align} y & = - x^2 - 10x - 25 \phantom{0000000} [\text{Maximum curve } (\cap)] \\ y & = - (x + 5)^2 \\ y & = - [x - (-5)]^2 + 0 \\ \\ \text{Maximum point: } & (-5, 0) \\ \\ \text{Let } & x = 0, \\ y & = - (0 + 5)^2 \\ y & = -25 \phantom{000000000000000000} [y \text{-intercept}] \end{align}
(b)(i)
\begin{align} y & = x^2 - 8x + 16 \\ & = x^2 - 8x + \left(8 \over 2\right)^2 - \left(8 \over 2\right)^2 + 16 \phantom{00000000} [\text{Complete the square}] \\ & = x^2 - 8x + 4^2 - 4^2 + 16 \\ & = (x - 4)^2 - 16 + 16 \\ & = (x - 4)^2 \end{align}
(b)(ii)
\begin{align} y & = x^2 - 8x + 16 \phantom{0000000} [\text{Minimum curve } (\cup)] \\ y & = (x - 4)^2 \\ y & = (x - 4)^2 + 0 \\ \\ \text{Minimum point: } & (4, 0) \\ \\ \text{Let } & x = 0, \\ y & = (0 - 4)^2 \\ y & = 16 \phantom{000000000000000000} [y \text{-intercept}] \end{align}
(a)(i)
\begin{align} y & = -x^2 + 6x - 6 \\ & = -(x^2 - 6x) - 6 \\ & = - \left[ x^2 - 6x + \left(6 \over 2\right)^2 - \left(6 \over 2\right)^2 \right] - 6 \phantom{00000000} [\text{Complete the square}] \\ & = - (x^2 - 6x + 3^2 - 3^2) - 6 \\ & = - [ (x - 3)^2 - 9 ] - 6 \\ & = - (x - 3)^2 + 9 - 6 \\ & = - (x - 3)^2 + 3 \end{align}
(a)(ii)
\begin{align} y & = - x^2 + 6x - 6 \phantom{0000000} [\text{Maximum curve } (\cap)] \\ y & = -(x - 3)^2 + 3 \\ \\ \text{Maximum point: } & (3, 3) \\ \\ \text{Let } & x = 0, \\ y & = -(0 - 3)^2 + 3 \\ y & = -6 \phantom{000000000000000000} [y \text{-intercept}] \end{align}
(b)(i)
\begin{align} y & = x^2 - 8x + 5 \\ & = x^2 - 8x + \left(8 \over 2\right)^2 - \left(8 \over 2\right)^2 + 5 \phantom{00000000} [\text{Complete the square}] \\ & = x^2 - 8x + 4^2 - 4^2 + 5 \\ & = (x - 4)^2 - 16 + 5 \\ & = (x - 4)^2 - 11 \end{align}
(b)(ii)
\begin{align} y & = x^2 - 8x + 5 \phantom{0000000} [\text{Minimum curve } (\cup)] \\ y & = (x - 4)^2 - 11 \\ \\ \text{Minimum point: } & (4, -11) \\ \\ \text{Let } & x = 0, \\ y & = (0 - 4)^2 - 11 \\ y & = 5 \phantom{000000000000000000} [y \text{-intercept}] \end{align}
(i)
\begin{align} \text{Minimum point: } & \left(-{1 \over 2}, {3 \over 4} \right) \\ \\ y = \left[ x - \left(-{1 \over 2}\right) \right]^2 & + {3 \over 4} \\ \\ \\ h = -{1 \over 2}, k & = {3 \over 4} \end{align}
(ii)
\begin{align} y = \left[ x - \left(-{1 \over 2}\right) \right]^2 & + {3 \over 4} \phantom{0000000000} [\text{Minimum curve } (\cup)] \\ \\ \text{Minimum point: } & \left(-{1 \over 2}, {3 \over 4} \right) \\ \\ \text{Let } & x = 0, \\ y & = \left[0 - \left(-{1 \over 2}\right) \right]^2 + {3 \over 4} \\ y & = 1 \phantom{000000000000000000} [ y \text{-intercept}] \end{align}