S3 E Maths Textbook Solutions >> think! Mathematics Textbook 3A (8th Edition) Chapters 1 & 2 Solutions >>
Review Ex 1
Please email me if you spot any mistakes or have any questions.
Solutions
Click to display or to hide
(a)
x2+8x+5=0x2+8x+(82)2−(82)2+5=0x2+8x+42−42+5=0(x+4)2−16+5=0(x+4)2−11=0(x+4)2=11x+4=±√11 x+4=√11 or x+4=−√11x=√11−4x=−√11−4x≈−0.683x≈−7.32
(b)
x2+7x−3=0x2+7x+(72)2−(72)2−3=0x2+7x+3.52−3.52−3=0(x+3.5)2−12.25−3=0(x+3.5)2−15.25=0(x+3.5)2=15.25x+3.5=±√15.25 x+3.5=√15.25 or x+3.5=−√15.25x=√15.25−3.5x=−√15.25−3.5x≈0.405x≈−7.41
(c)
x2−11x−7=0x2−11x+(112)2−(112)2−7=0x2−11x+5.52−5.52−7=0(x−5.5)2−30.25−7=0(x−5.5)2−37.25=0(x−5.5)2=37.25x−5.5=±√37.25 x−5.5=√37.25 or x−5.5=−√37.25x=√37.25+5.5x=−√37.25+5.5x≈11.6x≈−0.603
(d)
x2+1.2x=1x2+1.2x+(1.22)2−(1.22)2=1x2+1.2x+0.62−0.62=1(x+0.6)2−0.36=1(x+0.6)2=1+0.36(x+0.6)2=1.36x+0.6=±√1.36 x+0.6=√1.36 or x+0.6=−√1.36x=√1.36−0.6x=−√1.36−0.6x≈0.566x≈−1.77
(a)
2x2+6x+1=0x=−b±√b2−4ac2a=−6±√(6)2−4(2)(1)2(2)=−6±√284=−0.1771 or −2.822≈−0.177 or −2.82
(b)
3x2−7x−2=0x=−b±√b2−4ac2a=−(−7)±√(−7)2−4(3)(−2)2(3)=7±√736=2.590 or −0.2573≈2.59 or −0.257
(c)
−4x2+x+5=0x=−b±√b2−4ac2a=−1±√(1)2−4(−4)(5)2(−4)=−1±√81−8=−1 or 54
(d)
3x2=5x+13x2−5x−1=0x=−b±√b2−4ac2a=−(−5)±√(−5)2−4(3)(−1)2(3)=5±√376=1.847 or −0.1804≈1.85 or −0.180
(a)
(x−3)2=425x−3=±√425x−3=±25 x−3=25 or x−3=−25x=25+3x=−25+3x=175x=135
(b)
(4−x)2=124−x=±√12 4−x=√12 or 4−x=−√124−√12=x4+√12=x0.536≈x7.46≈x
(c)
(x−1)(x+3)=9x2+3x−x−3=9x2+2x−3=9x2+2x−3−9=0x2+2x−12=0x=−b±√b2−4ac2a=−2±√(2)2−4(1)(−12)2(1)=−2±√522=2.605 or −4.605≈2.61 or −4.61
(d)
x(x+4)=17x2+4x=17x2+4x−17=0x=−b±√b2−4ac2a=−4±√(4)2−4(1)(−17)2(1)=−4±√842=2.582 or −6.582≈2.58 or −6.58
(i)
2x2−7x+4=0x=−b±√b2−4ac2a=−(−7)±√(−7)2−4(2)(4)2(2)=7±√174=2.780 or 0.7192≈2.78 or 0.72 (2 d.p.)
(ii)
2x2−7x+4=0Replace x by y−1,2(y−1)2−7(y−1)+4=0From (i), x=2.780 or 0.7192y−1=2.780 or 0.7192 y−1=2.780 or y−1=0.7192y=2.780+1y=0.7192+1y=3.780y=1.7192y≈3.78y≈1.72
(a)
x=2 or x=67x−2=07x=67x−6=0 (x−2)(7x−6)=07x2−6x−14x+12=07x2−20x+12=0
(b)
x=−12 or x=−232x=−13x=−22x+1=03x+2=0 (2x+1)(3x+2)=06x2+4x+3x+2=06x2+7x+2=0
(a)
x−11=5x+7(x+7)(x−1)=5x2−x+7x−7=5x2+6x−7=5x2+6x−7−5=0x2+6x−12=0x=−b±√b2−4ac2a=−6±√(6)2−4(1)(−12)2(1)=−6±√842=1.582 or −7.582≈1.58 or −7.58
(b)
x−1x+4=2xx−3(x−3)(x−1)=2x(x+4)x2−x−3x+3=2x2+8xx2−4x+3=2x2+8x0=2x2−x2+8x+4x−30=x2+12x−3x=−b±√b2−4ac2a=−12±√(12)2−4(1)(−3)2(1)=−12±√1562=0.2449 or −12.24≈0.245 or −12.2
(c)
1x−5x=51x=5+5x1=x(5+5x)1=5x+5x20=5x2+5x−1x=−b±√b2−4ac2a=−5±√(5)2−4(5)(−1)2(5)=−5±√4510=0.1708 or −1.170≈0.171 or −1.17
(d)
5x=3−xx−35x=31−xx−35x=3(x−3)x−3−xx−35x=3(x−3)−xx−35x=3x−9−xx−35x=2x−9x−35(x−3)=x(2x−9)5x−15=2x2−9x0=2x2−9x−5x+150=2x2−14x+15x=−b±√b2−4ac2a=−(−14)±√(−14)2−4(2)(15)2(2)=14±√764=5.679 or 1.320≈5.68 or 1.32
(e)
2x+1+1x−3=52(x−3)(x+1)(x−3)+x+1(x+1)(x−3)=52(x−3)+x+1(x+1)(x−3)=52x−6+x+1x2−3x+x−3=53x−5x2−2x−3=513x−5=5(x2−2x−3)3x−5=5x2−10x−150=5x2−10x−3x−15+50=5x2−13x−10x=−b±√b2−4ac2a=−(−13)±√(−13)2−4(5)(−10)2(5)=13±√36910=3.221 or −0.6209≈3.22 or −0.621
(f)
xx+1+15=3x−25x5(x+1)+x+15(x+1)=3x−25x+x+15(x+1)=3x−26x+15x+5=3x−2(x−2)(6x+1)=3(5x+5)6x2+x−12x−2=15x+156x2−11x−2=15x+156x2−11x−15x−2−15=06x2−26x−17=0x=−b±√b2−4ac2a=−(−26)±√(−26)2−4(6)(−17)2(6)=26±√108412=4.910 or 0.5770≈4.91 or 0.577
(g)
5x−2−3x2−4=275x−2−3(x+2)(x−2)⏟a2−b2=(a+b)(a−b)=275(x+2)(x+2)(x−2)−3(x+2)(x−2)=275(x+2)−3(x+2)(x−2)=275x+10−3x2−4=275x+7x2−4=277(5x+7)=2(x2−4)35x+49=2x2−80=2x2−35x−8−490=2x2−35x−570=(x−19)(2x+3) x−19=0 or 2x+3=0x=192x=−3x=−32
(h)
12x+1+x+32x2−5x−3=212x+1+x+3(2x+1)(x−3)=2x−3(2x+1)(x−3)+x+3(2x+1)(x−3)=2x−3+x+3(2x+1)(x−3)=22x2x2−5x−3=212x=2(2x2−5x−3)2x=4x2−10x−60=4x2−10x−2x−60=4x2−12x−60=2x2−6x−3x=−b±√b2−4ac2a=−(−6)±√(−6)2−4(2)(−3)2(2)=6±√604=3.436 or −0.4364≈3.44 or −0.436
(i)
y=x2−7x+12=(x−3)(x−4)
(ii)
y=x2−7x+12000000[Minimum curve ∪]Let x=0,y=(0)2−7(0)+12y=12000000000000000.[y-intercept]Let y=0,0=x2−7x+120=(x−3)(x−4)x=30 or 0x=40000000[x-intercepts]Line of symmetry, x=3+42x=3.5Let x=3.5,y=(3.5)2−7(3.5)+12y=−0.25Minimum point: (3.5,−0.25)

(i)
y=−x2+5x−4=−(x2−5x)−4=−[x2−5x+(52)2−(52)2]−4000000[Complete the square]=−(x2−5x+2.52−2.52)−4=−[(x−2.5)2−6.25]−4=−(x−2.5)2+6.25−4=−(x−2.5)2+2.25
(ii)
y=−x2+5x−4000000000[Maximum curve ∩]y=−(x−2.5)2+2.25Maximum point: (2.5,2.25)Let x=0,y=−(0−2.5)2+2.25y=−4000000000000000000[y-intercept]

(i)
In November, US$x→£100US$1→£100xUS$650→£65.000xIn December, US$(x−5)→£100US$1→£100x−5US$650→£65.000x−565.000x−5−65.000x=20
(ii)
65.000x−5−65.000x=2065.000xx(x−5)−65.000(x−5)x(x−5)=2065.000x−65.000(x−5)x(x−5)=2065.000x−65.000x+325.000x2−5x=20325.000x2−5x=201325.000=20(x2−5x)325.00020=x2−5x16.250=x2−5x0=x2−5x−16.250x=−b±√b2−4ac2a=−(−5)±√(−5)2−4(1)(−16.250)2(1)=5±√65.0252=130 or −125In November, £100→US$x£1250→US$12.5xAmount of dollars received=12.5x=12.5(130)=US$1625
(i)
Time=DistanceSpeedTime taken by Ali=40x hoursTime taken by Kumar=40x−30 hours
(ii)
10 mins=16 hours40x+16=40x−306(40)6x+x6x=40x−30240+x6x=40x−30(x−30)(240+x)=40(6x)240x+x2−7200−30x=240xx2+210x−7200=240xx2+210x−240x−7200=0x2−30x−7200=000 (Shown)
(iii)
x2−30x−7200=0x=−b±√b2−4ac2a=−(−30)±√(−30)2−4(1)(−7200)2(1)=30±√29.7002=101.168 or −71.168≈101.17 or −71.17 (2 d.p.)
(iv)
Since Ali's average speed is greater than 0 km/h, reject x=−71.168
(v)
Time taken by Kumar=40x−30=40101.168−30=0.56205 hours=(0.56205×60) mins≈33.7 mins
(i)
x g of sugar→1 cake1 g of sugar→1x cake1 kg of sugar→1000x cake000000[1 kg = 1000 g]6 kg of sugar→6000x cakes
(ii)
(x+10) g of sugar→1 cake1 g of sugar→1x+10 cake1 kg of sugar→1000x+10 cake6 kg of sugar→6000x+10 cakes
(iii)
6000x−6000x+10=36000(x+10)x(x+10)−6000xx(x+10)=36000(x+10)−6000xx(x+10)=36000x+60.000−6000xx2+10x=360.000x2+10x=3160.000=3(x2+10x)60.0003=x2+10x20.000=x2+10x0=x2+10x−20.00000 (Shown)
(iv)
0=x2+10x−20.000x=−b±√b2−4ac2a=−10±√(10)2−4(1)(−20.000)2(1)=−10±√80.1002=136.51 or −146.51≈137 or −147
(v)
Cakes baked by Devi=6000x=6000136.51=43.952≈43000000[Round down]Cakes baked by Siti=6000x+10=6000136.51+10=40.952≈40Money collected=(43+40)×15=$1245
(i)
Length of floor=(35−2x) mBreadth of floor=(22−2x) m
(ii)
Floor area=(35−2x)(22−2x)400=770−70x−44x+4x2400=4x2−114x+7700=4x2−114x+770−4000=4x2−114x+3700=2x2−57x+18500 (Shown)
(iii)
0=2x2−57x+185x=−b±√b2−4ac2a=−(−57)±√(−57)2−4(2)(185)2(2)=57±√17694=24.764 or 3.735≈24.76 or 3.74 (2 d.p.)
(iv) Reject x = 24.764 since it is longer than the width of the room (22 m)
Width of floor=x≈3.74 m
(i)
60+25x−x2=0−x2+25x+60=0x=−b±√b2−4ac2a=−25±√(25)2−4(−1)(60)2(−1)=−25±√865−2=−2.205 or 27.205≈−2.2 or 27.2 (1 d.p.)x≈27.2 represents the horizontal distance from the towerwhen the stone is at sea level (y=0)
(ii)

(iii)(a)
Greatest height (y)=216 m
(iii)(b)
Horizontal distance (x)=6.5 m or 18.5 m
Let the time taken by the larger pipe be x minsx mins→1 tank1 min→1x tank1119 mins→1009x tank000000[1119=1009]Time taken by smaller pipe=(x+5) mins(x+5) mins→1 tank1 min→1x+5 tank1119 mins→1009(x+5) tank1009x+1009(x+5)=1100(x+5)9x(x+5)+100x9(x+5)=1100(x+5)+100x9x(x+5)=1100x+500+100x9x2+45x=1200x+5009x2+45x=11200x+500=9x2+45x0=9x2+45x−200x−5000=9x2−155x−5000=(x−20)(9x+25)
x−20=0 or 9x+25=0x=209x=−25x=−259 (Reject, since x>0)
Time taken by larger pipe=x=20 minsTime taken by smaller pipe=x+5=20+5=25 mins
Time=DistanceSpeedTime taken (against current)=12x−5 hoursTime taken (with current)=12x+5 hours1 hour 30 mins=112 hours12x+5+12x−5=3212(x−5)(x+5)(x−5)+12(x+5)(x+5)(x−5)=3212(x−5)+12(x+5)(x+5)(x−5)=3212x−60+12x+60x2−52⏟(a+b)(a−b)=a2−b2=3224xx2−25=322(24x)=3(x2−25)48x=3x2−750=3x2−48x−750=x2−16x−25x=−b±√b2−4ac2a=−(−16)±√(−16)2−4(1)(−25)2(1)=16±√3562=17.434 or −1.4339 (Reject, since x>0)Speed of boat in still water=x=17.434≈17.4 km/h