S3 E Maths Textbook Solutions >> think! Mathematics Textbook 3A (8th Edition) Chapters 1 & 2 Solutions >>
Review Ex 2
Please email me if you spot any mistakes or have any questions.
Solutions
Click to display or to hide
(a)
\begin{align} 13x & < - 5x + 2 \\ 13x + 5x & < 2 \\ 18x & < 2 \\ x & < {2 \over 18} \\ x & < {1 \over 9} \end{align}
(b)
\begin{align} x - 6 & > 4x - 9 \\ -6 + 9 & > 4x - x \\ 3 & > 3x \\ {3 \over 3} & > x \\ 1 & > x \end{align}
(c)
\begin{align} 7(x - 3) & \le 2x + 1 \\ 7x - 21 & \le 2x + 1 \\ 7x - 2x & \le 1 + 21 \\ 5x & \le 22 \\ x & \le {22 \over 5} \end{align}
(d)
\begin{align} 8x + 3 & \ge 4x + 7 \\ 8x - 4x & \ge 7 - 3 \\ 4x & \ge 4 \\ x & \ge {4 \over 4} \\ x & \ge 1 \end{align}
(a)
\begin{align} 5 - a & \le a - 6 &&& a - 6 & \le 10 - 3a \\ - a - a & \le -6 - 5 &&& a + 3a & \le 10 + 6 \\ -2a & \le -11 &&& 4a & \le 16 \\ a & \ge {-11 \over -2} &&& a & \le {16 \over 4} \\ a & \ge 5.5 &&& a & \le 4 \end{align}
$$ \text{No solutions} $$
(b)
\begin{align}
4 - b & < 2b - 1
&&&
2b - 1 & < 7 + b \\
4 + 1 & < 2b + b
&&&
2b - b & < 7 + 1 \\
5 & < 3b
&&&
b & < 8 \\
{5 \over 3} & < b
&&&
b & < 8
\end{align}
$$ {5 \over 3} < b < 8 $$
(c)
\begin{align}
4c - 1 & < {1 \over 2}
&&&
{1 \over 2} & \le 3c + 2 \\
4c & < {1 \over 2} + 1
&&&
{1 \over 2} - 2 & \le 3c \\
4c & < {3 \over 2}
&&&
-{3 \over 2} & \le 3c \\
c & < {1 \over 4} \left(3 \over 2\right)
&&&
{1 \over 3}\left(-{3 \over 2}\right) & \le c \\
c & < {3 \over 8}
&&&
-{1 \over 2} & \le c
\end{align}
$$ -{1 \over 2} \le c < {3 \over 8} $$
(d)
\begin{align}
2d + 1 & \ge d
&&&
d & > 3d - 20 \\
2d - d & \ge -1
&&&
20 & > 3d - d \\
d & \ge - 1
&&&
20 & > 2d \\
& &&&
{20 \over 2} & > d \\
& &&&
10 & > d
\end{align}
$$ -1 \le d < 10 $$
(a)
\begin{align}
5x & > 69 - 2x
&&&
27 - 2x & \ge 4 \\
5x + 2x & > 69
&&&
27 - 4 & \ge 2x \\
7x & > 69
&&&
23 & \ge 2x \\
x & > {69 \over 7}
&&&
{23 \over 2} & \ge x \\
x & > 9{6 \over 7}
&&&
11{1 \over 2} & \ge x
\end{align}
\begin{align}
9{6 \over 7} & \phantom{.} < x < 11{1 \over 2} \\
\\
\text{Integer values} & \text{ of } x \text{ are 10 and 11}
\end{align}
(b)
\begin{align}
-10 & \le x < - 4
&&&
2 - 5x & < 35 \\
& &&&
-5x & < 35 - 2 \\
& &&&
-5x & < 33 \\
& &&&
x & > {33 \over -5} \\
& &&&
x & > -6{3 \over 5}
\end{align}
\begin{align}
-6{3 \over 5} & \phantom{.} < x < -4 \\
\\
\text{Integer values} & \text{ of } x \text{ are -6 and -5}
\end{align}
(a)
\begin{align}
3x - 5 & < 26
&&&
26 & \le 4x - 6 \\
3x & < 26 + 5
&&&
26 + 6 & \le 4x \\
3x & < 31
&&&
32 & \le 4x \\
x & < {31 \over 3}
&&&
{32 \over 4} & \le x \\
x & < 10{1 \over 3}
&&&
8 & \le x
\end{align}
\begin{align}
8 & \phantom{.} \le x < 10{1 \over 3} \\
\\
\text{Integer values} & \text{ of } x \text{ are 8, 9 and 10}
\end{align}
(b)
\begin{align}
3x + 2 & < 19
&&&
19 & < 5x - 4 \\
3x & < 19 - 2
&&&
19 + 4 & < 5x \\
3x & < 17
&&&
23 & < 5x \\
x & < {17 \over 3}
&&&
{23 \over 5} & < x \\
x & < 5{2 \over 3}
&&&
4{3 \over 5} & < x
\end{align}
\begin{align}
4{3 \over 5} & \phantom{.} \le x < 5{2 \over 3} \\
\\
\text{Integer values} & \text{ of } x \text{ is 5}
\end{align}
(c)
\begin{align}
3 & < 3x - 9
&&&
3x - 9 & < 4 \\
3 + 9 & < 3x
&&&
3x & < 4 + 9 \\
12 & < 3x
&&&
3x & < 13 \\
{12 \over 3} & < x
&&&
x & < {13 \over 3} \\
4 & < x
&&&
x & < 4{1 \over 3}
\end{align}
\begin{align}
4 & \phantom{.} < x < 4{1 \over 3} \\
\\
\text{No integers} & \text{ satisfy the inequality}
\end{align}
(d)
\begin{align}
-10 & < 7 - 2x
&&&
7 - 2x & \le -1 \\
2x & < 7 + 10
&&&
7 + 1 & \le 2x \\
2x & < 17
&&&
8 & \le 2x \\
x & < {17 \over 2}
&&&
{8 \over 2} & \le x \\
x & < 8{1 \over 2}
&&&
4 & \le x
\end{align}
\begin{align}
4 & \phantom{.} \le x < 8{1 \over 2} \\
\\
\text{Integer values} & \text{ of } x \text{ are 4, 5, 6, 7 and 8}
\end{align}
\begin{align}
\text{Let } x \text{ represent } & \text{the prime number}
\end{align}
\begin{align}
3(x + 5) - 7 & \le 55
&&&
4(x - 2) & > 39 \\
3x + 15 - 7 & \le 55
&&&
4x - 8 & > 39 \\
3x + 8 & \le 55
&&&
4x & > 39 + 8 \\
3x & \le 55 - 8
&&&
4x & > 47 \\
3x & \le 47
&&&
x & > {47 \over 4} \\
x & \le {47 \over 3}
&&&
x & > 11{3 \over 4} \\
x & \le 15{2 \over 3}
\end{align}
\begin{align}
11{3 \over 4} & \phantom{.} < x \le 15{2 \over 3} \\
\\
\text{The prime } & \text{number is } 13
\end{align}
To solve this question, we assume that each of the customers spend the minimum $20 (worst case scenario) in order to receive the goodie bag
\begin{align}
45 \text{ cents} & = \$ 0.45 \\
\\
20 \text{ cents} & = \$ 0.20 \\
\\
\text{Cost of 1 goodie bag} & = 2(0.45) + 3(0.20) \\
& = \$ 1.50
\end{align}
\begin{align}
\text{Total cost of goodie bags} & \le \$200
&&&
\text{Total sales} & \ge \$2000 \\
(1.50)(x) & \le 200
&&&
(20)(x) & \ge 2000 \\
1.5x & \le 200
&&&
20x & \ge 2000 \\
x & \le {200 \over 1.5}
&&&
x & \ge {2000 \over 20} \\
x & \le 133{1 \over 3}
&&&
x & \ge 100
\end{align}
\begin{align}
100 & \phantom{.} \le x \le 133{1 \over 3} \\
\\
\text{Possible } & \text{value of } x \text{ is 100}
\end{align}