think! Mathematics Textbook Secondary 4 (8th Edition) solutions
Ex 1D
Please email me if you spot any mistakes or have any questions.
Solutions
Click to display or to hide
(i)
\begin{align} \xi & = \{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 \} \\ \\ I & = \{ 4, 8, 12 \} \\ \\ J & = \{ 1, 2, 4, 8 \} \end{align}
(ii)
(iii)(a)
\begin{align} ( I \cup J )' & = \{ 3, 5, 6, 7, 9, 10, 11, 13, 14, 15 \} \end{align}
(iii)(b)
\begin{align} I \cup J' & = \{ 12 \} \end{align}
(i)
\begin{align} \xi & = \{ 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 \} \\ \\ Y & = \{ 6, 9, 12, 15, 18 \} \\ \\ Z & = \{ 9, 18 \} \end{align}
(ii)
(iii)(a)
\begin{align} (Y \cup Z)' & = \{ 4, 5, 7, 8, 10, 11, 13, 14, 16, 17 \} \end{align}
(iii)(b)
\begin{align} Y \cap Z' & = \{ 6, 12, 15 \} \end{align}
(i)
\begin{align} \xi & = \{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 \} \\ \\ P & = \{ 2, 3, 5, 7, 11 \} \\ \\ Q & = \{ 4, 6, 8, 9, 10 \} \phantom{000000} [\text{Composite number has more than 2 factors}] \end{align}
(ii)
(iii)(a)
\begin{align} P \cup Q & = \{ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 \} \end{align}
(iii)(b)
\begin{align} (P \cup Q)' & = \{ 0, 1 \} \end{align}
(iii)(c)
\begin{align} P' \cap Q & = \{ 4, 6, 8, 9, 10 \} \end{align}
(i)
(ii)
(i)
(a)
$$ A $$
(b)
$$ B $$
(c)
$$ A \cap B $$
(d)
$$ A \cup B $$
(e)
$$ A' $$
(f)
$$ B' $$
\begin{align} \text{No. of people} & = 253 - 43 - 179 \\ & = 31 \end{align}
\begin{align} \text{No. of students} & = 38 - 4 - 19 \\ & = 15 \end{align}
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(Yeah it's blank!)
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(a)
$$ X \cap Y' $$
(b)
$$ X' \cap Y $$
(c)
$$ (X \cup Y)' $$
(d)
$$ (X \cap Y)' $$
(e)
$$ X \cup Y' $$
(f)
$$ X' \cup Y $$
(g)
$$ X \cap Y' $$
(h)
$$ X' \cup Y $$
\begin{align} \text{No. of students} & = 37 - 4 - 8 - 11 \\ & = 14 \end{align}
\begin{align} \text{No. of students} & = 14 + 8 \\ & = 22 \end{align}
(i)
\begin{align} n(A \cup B)' & = 17 - 4 - 8 \\ & = 5 \end{align}
(ii)
\begin{align} n(A \cup B)' & = 0 \end{align}
(i)
\begin{align} n(X \cap Y)' & = 8 + 8 \\ & = 16 \end{align}
(ii)
\begin{align} n(X \cap Y)' & = 25 - 1 \\ & = 24 \end{align}
(i)
\begin{align} n(A \cup B)' & = 10 \end{align}
(ii)
\begin{align} n(A \cup B)' & = 1 \end{align}
(i)
\begin{align} n (X \cap Y)' & = 3 + 4 \\ & = 7 \end{align}
(ii)
\begin{align} n (X \cap Y)' & = 4 + 7 \\ & = 11 \end{align}
(i)
\begin{align} A \cap \xi & = A \end{align}
(ii)
\begin{align} A \cup \xi & = \xi \end{align}
(iii)
\begin{align} A \cap \emptyset & = \emptyset \end{align}
(iv)
\begin{align} A \cup \emptyset & = A \end{align}
(i)
\begin{align} A \cap B & = A \phantom{000000} [\text{Since } A \text{ is a proper subset of } B] \end{align}
(ii)
\begin{align} A \cup B & = B \phantom{000000} [\text{Since } A \text{ is a proper subset of } B] \end{align}
(iii)
\begin{align} \text{Not possible to simplify} \end{align}
(iv)
\begin{align} \text{Not possible to simplify} \end{align}
(v)
\begin{align} (B \cup C) \cap A & = A \end{align}
(vi)
\begin{align} (B \cap C) \cap A & = \emptyset \end{align}
(vii)
\begin{align} \text{Not possible to simplify} \end{align}
(viii)
\begin{align} (A \cap C) \cup B & = B \end{align}
(i)
\begin{align} (P \cap Q') \cup (P' \cap Q) \end{align}
(ii)
\begin{align} [(P \cap Q') \cup (P' \cap Q)] \cup (P' \cap Q') \end{align}
\begin{align} \text{Let no. of students who like both} & = x \\ \\ 11 - x + x + 21 - x + 7 & = 35 \\ -x + x - x & = 35 - 11 - 21 - 7 \\ -x & = -4 \\ x & = 4 \end{align}
\begin{align} \text{Let no. of adults that commnute by both ways} & = x \\ \\ 12 - x + x + 25 - x + 8 & = 40 \\ - x + x - x & = 40 - 12 - 25 - 8 \\ - x & = - 5 \\ x & = 5 \\ \\ \text{No. of adults who commute by bus or by train but not both} & = 12 - x + 25 - x \\ & = 37 - 2 x\\ & = 37 - 2(5) \\ & = 27 \end{align}
(i)
\begin{align} \text{No. of students} & = 15 + 9 \\ & = 24 \end{align}
(ii)
\begin{align} \text{No. of students} & = 38 - 15 - 9 \phantom{000000} [\text{Refer to Venn diagram in (i)}] \\ & = 14 \end{align}
(iii)
\begin{align} \text{No. of students} & = 9 \end{align}
(iv)
\begin{align} \text{No. of students} & = 0 \phantom{000000} [\text{Refer to Venn diagram in iii - all students} \\ & \phantom{0000000000} \text{who enjoy swimming enjoy cycling as well!}] \end{align}
(i)
\begin{align} \text{No. of children} & = 6 \end{align}
(ii)
\begin{align} \text{No. of children} & = 35 - 7 - 6 - 22 \phantom{000000} [\text{Refer to Venn diagram in i}] \\ & = 0 \end{align}
(ii)
\begin{align} \text{No. of children} & = 15 + 13 \\ & = 28 \end{align}
(iv)
\begin{align} \text{No. of children} & = 15 \phantom{000000} [\text{Refer to Venn diagram in iii}] \end{align}