Techniques
Constants & single algebraic terms:
If $a$ is a constant,
$ {d \over dx} (a) = $
$ \phantom{0} 0 \phantom{0} $
$ {d \over dx} (ax^n) = $
$ a n x^{n - 1} $
Trigonometric terms:
$ {d \over dx} \{ \sin [f(x)] \} = $
$ f'(x) . \cos [f(x)] $
$ {d \over dx} \{ \cos [f(x)] \} = $
$ f'(x) . - \sin [f(x)] $
$ {d \over dx} \{ \tan [f(x)] \} = $
$ f'(x) . \sec^2 [f(x)] $
Note: $f'(x)$ is the derivative of $f(x)$
Exponential terms:
$ {d \over dx} \left[ e^{f(x)} \right] = $
$ f'(x) . e^{f(x)} $
Note: $f'(x)$ is the derivative of $f(x)$
Natural logarithms ($\ln$):
$ {d \over dx} \{ \ln [f(x)] \} = $
$ {f'(x) \over f(x)} $
Note: $f'(x)$ is the derivative of $f(x)$
Chain rule:
$ {d \over dx} [f(x)]^n = $
$ n [f(x)]^{n - 1} . f'(x) $
Note: $f'(x)$ is the derivative of $f(x)$
Product rule:
$ {d \over dx} (uv) = $
$ u {dv \over dx} + v{du \over dx} $
Quotient rule:
$ {d \over dx} \left(u \over v\right) = $
$ {v {du \over dx} - u {dv \over dx} \over v^2} $
Questions
Techniques
Q1. Show that $ {d \over dx} [x^2 (3x^2 - 4)^5 ] = 4x(3x^2 - 4)^4 (9x^2 - 2) $.
Solutions
\begin{align*}
u & = x^2 &&& v & = (3x^2 - 4)^5 \\
{du \over dx} & = 2x &&& {dv \over dx} & = 5(3x^2 - 4)^4 (6x) \phantom{000000} [\text{Chain rule}] \\
& &&& & = 30x (3x^2 - 4)^4
\end{align*}
\begin{align*}
{d \over dx} [x^2 (3x^2 - 4)^5 ]
& = (x^2) [ 30x (3x^2 - 4)^4 ] + (3x^2 - 4)^5 (2x)
\phantom{000000} [\text{Product rule}] \\
& = 30x^3 (3x^2 - 4)^4 + 2x (3x^2 - 4)^5 \\
& = 2x(3x^2 - 4)^4 [ 15x^2 + (3x^2 - 4) ] \phantom{00000000000} [\text{Factorise common factors}] \\
& = 2x(3x^2 - 4)^4 (18x^2 - 4) \\
& = 2x(3x^2 - 4)^4 (2) (9x^2 - 2) \\
& = 4x (3x^2 - 4)^4 (9x^2 - 2) \phantom{0} \text{ (Shown)}
\end{align*}
Q2. Show that $ {d \over dx} \left( e^{2x} \over \sqrt{3x^2 + 4} \right) = { e^{2x} (ax^2 + bx + c) \over \sqrt{(3x^2 + 4)^3} } $, where $a$, $b$ and $c$ are integers.
Answer: $ a = 6, b = -3, c = 8 $
Solutions
\begin{align*}
u & = e^{2x} &&& v & = \sqrt{3x^2 + 4} \\
{du \over dx} & = 2 e^{2x} &&& & = (3x^2 + 4)^{1 \over 2} \\
& &&& {dv \over dx} & = {1 \over 2} (3x^2 + 4)^{-{1 \over 2}} . (6x) \phantom{000000} [\text{Chain rule}] \\
& &&& & = 3x (3x^2 + 4)^{-{1 \over 2}}
\end{align*}
\begin{align*}
{d \over dx} \left( e^{2x} \over (3x^2 + 4)^{1 \over 2} \right)
& = { (3x^2 + 4)^{1 \over 2} (2 e^{2x} ) - (e^{2x}) [3x (3x + 4)^{-{1 \over 2}} ] \over [ (3x^2 + 4)^{1 \over 2} ]^2 } \phantom{000000} [\text{Quotient rule}] \\
& = { 2 e^{2x} (3x^2 + 4)^{1 \over 2} - 3x e^{2x} (3x + 4)^{-{1 \over 2}} \over 3x^2 + 4) }
\times { (3x + 4)^{1 \over 2} \over (3x + 4)^{1 \over 2} } \\
& = { 2 e^{2x} (3x^2 + 4)^1 - 3x e^{2x} (3x + 4)^0 \over (3x^2 + 4)^{3 \over 2} } \\
& = { 2 e^{2x} (3x^2 + 4) - 3x e^{2x} (1) \over \sqrt{ (3x^2 + 4)^3 } } \\
& = { 6 x^2 e^{2x} + 8 e^{2x} - 3x e^{2x} \over \sqrt{ (3x^2 + 4)^3 } } \\
& = { e^{2x} ( 6x^2 - 3x + 8) \over \sqrt{ (3x^2 + 4)^3 } } \\
\\
\therefore a & = 6, b = -3, c = 8
\end{align*}
Q3. Differentiate $ \tan^3 (4x) $ with respect to $x$.
Answer: $ 12 \tan^2 (4x) \sec^2 (4x) $
Solutions
\begin{align*}
{d \over dx} [ \tan^3 (4x) ] & = {d \over dx} [ \tan (4x) ] ^3 \\
& = 3[ \tan (4x) ]^2 (4 \sec^2 4x) \phantom{000000} [\text{Chain rule}] \\
& = 12 \tan^2 (4x) \sec^2 (4x)
\end{align*}
Partial fractions
Q4(i) Given that $ {2x - 1 \over (x - 1)^2} = {A \over x - 1} + {B \over (x - 1)^2 } $, find the value of $A$ and of $B$.
(from A Maths 360 Ex 12.2)
Answer: $ A = 2, B = 1 $
Solutions
\begin{align*}
{2x - 1 \over (x - 1)^2}
& = {A \over (x - 1)} + {B \over (x - 1)^2} \\
& = {A(x - 1) \over (x - 1)^2} + {B \over (x - 1)^2} \\
& = {A(x - 1) + B \over (x - 1)^2} \\
\\
2x - 1 & = A(x - 1) + B \\
\\
\text{Let } & x = 1, \\
2(1) - 1 & = A(0) + B \\
1 & = B \\
\\
2x - 1 & = A(x - 1) + 1 \\
\\
\text{Let } & x = 0, \\
2(0) - 1 & = A(0 - 1) + 1 \\
-1 & = A(-1) + 1 \\
-1 & = -A + 1 \\
A & = 1 + 1 \\
& = 2 \\
\\
\therefore {2x - 1 \over (x - 1)^2} & = {2 \over (x - 1)} + {1 \over (x - 1)^2} \\
\\
\therefore A & = 2, B = 1
\end{align*}
Q4(ii) Hence, find the derivative of ${2x - 1 \over (x - 1)^2}$.
Answer: $ -{2x \over (x - 1)^3} $
Solutions
\begin{align*}
{d \over dx}\left[ {2x - 1 \over (x - 1)^2} \right]
& = {d \over dx}\left[ {2 \over x - 1} + {1 \over (x - 1)^2} \right] \\
& = {d \over dx}[ 2(x - 1)^{-1} + (x - 1)^{-2} ] \\
& = {d \over dx}(2(x - 1)^{-1}) + {d \over dx}(x - 1)^{-2} \\
& = (2)(-1)(x - 1)^{-2}(1) + (-2)(x - 1)^{-3}(1) \\
& = -2(x - 1)^{-2} - 2(x - 1)^{-3} \\
& = -2 \left[ 1 \over (x - 1)^2 \right] - 2 \left[ 1 \over (x - 1)^3 \right] \\
& = {-2 \over (x - 1)^{2}} - {2 \over (x - 1)^3} \\
& = {-2(x - 1) \over (x - 1)^{3}} - {2 \over (x - 1)^3} \\
& = {-2x + 2 - 2 \over (x - 1)^{3}} \\
& = {-2x \over (x - 1)^{3}} \\
& = -{2x \over (x - 1)^3}
\end{align*}
Show question
Q5. Given that $y = \ln (\sec x + \tan x)$, show that $ {d^2 y \over dx^2} - \tan x \left({dy \over dx}\right) = 0$.
(from think! A Maths Workbook Revision Ex 13)
Solutions
\begin{align*}
y & = \ln (\sec x + \tan x) \\
\\
{d \over dx}(\sec x) & = {d \over dx} \left(1 \over \cos x\right) \\
& = {d \over dx} (\cos x)^{-1} \\
& = (-1)(\cos x)^{-2} (-\sin x) \\
& = \left(1 \over \cos x\right)^2 (\sin x) \\
& = {1 \over \cos x} \left(\sin x \over \cos x\right) \\
& = \sec x \tan x \\
\\
{dy \over dx} & = {\sec x \tan x + \sec^2 x \over \sec x + tan x} \\
& = {\sec x( \tan x + \sec x) \over \sec x + \tan x} \\
& = \sec x \\
\\
{d^2 y \over dx^2} & = \sec x \tan x \\
\\
\\
{d^2 y \over dx^2} - \tan x \left(dy \over dx\right)
& = \sec x \tan x - \tan x (\sec x) \\
& = \sec x \tan x - \sec x \tan x \\
& = 0 \phantom{0} \text{ (Shown)}
\end{align*}
Past year O level questions
Year & paper |
Comments |
2024 P2 Question 11c |
Show question |
2023 P2 Question 5 |
Find the value of constants A and B |
2019 P1 Question 3 |
Find the value of constants A and B |
2017 P2 Question 1 |
Find the value of constant k |
← Trigonometry: Principal values
Integration techniques →
    (Subscription required)