A Maths Revision Notes >>

Differentiation techniques

Techniques

Constants & single algebraic terms:

If $a$ is a constant,

$ {d \over dx} (a) = $ $ \phantom{0} 0 \phantom{0} $

$ {d \over dx} (ax^n) = $ $ a n x^{n - 1} $


Trigonometric terms:

$ {d \over dx} \{ \sin [f(x)] \} = $ $ f'(x) . \cos [f(x)] $

$ {d \over dx} \{ \cos [f(x)] \} = $ $ f'(x) . - \sin [f(x)] $

$ {d \over dx} \{ \tan [f(x)] \} = $ $ f'(x) . \sec^2 [f(x)] $


Note: $f'(x)$ is the derivative of $f(x)$


Exponential terms:

$ {d \over dx} \left[ e^{f(x)} \right] = $ $ f'(x) . e^{f(x)} $


Note: $f'(x)$ is the derivative of $f(x)$


Natural logarithms ($\ln$):

$ {d \over dx} \{ \ln [f(x)] \} = $ $ {f'(x) \over f(x)} $


Note: $f'(x)$ is the derivative of $f(x)$


Chain rule:

$ {d \over dx} [f(x)]^n = $ $ n [f(x)]^{n - 1} . f'(x) $


Note: $f'(x)$ is the derivative of $f(x)$


Product rule:

$ {d \over dx} (uv) = $ $ u {dv \over dx} + v{du \over dx} $


Quotient rule:

$ {d \over dx} \left(u \over v\right) = $ $ {v {du \over dx} - u {dv \over dx} \over v^2} $


Questions

Techniques

Q1. Show that $ {d \over dx} [x^2 (3x^2 - 4)^5 ] = 4x(3x^2 - 4)^4 (9x^2 - 2) $.

Solutions


Q2. Show that $ {d \over dx} \left( e^{2x} \over \sqrt{3x^2 + 4} \right) = { e^{2x} (ax^2 + bx + c) \over \sqrt{(3x^2 + 4)^3} } $, where $a$, $b$ and $c$ are integers.

Answer: $ a = 6, b = -3, c = 8 $

Solutions


Q3. Differentiate $ \tan^3 (4x) $ with respect to $x$.

Answer: $ 12 \tan^2 (4x) \sec^2 (4x) $

Solutions


Partial fractions

Q4(i) Given that $ {2x - 1 \over (x - 1)^2} = {A \over x - 1} + {B \over (x - 1)^2 } $, find the value of $A$ and of $B$.

(from A Maths 360 Ex 12.2)

Answer: $ A = 2, B = 1 $

Solutions

Q4(ii) Hence, find the derivative of ${2x - 1 \over (x - 1)^2}$.

Answer: $ -{2x \over (x - 1)^3} $

Solutions


Show question

Q5. Given that $y = \ln (\sec x + \tan x)$, show that $ {d^2 y \over dx^2} - \tan x \left({dy \over dx}\right) = 0$.

(from think! A Maths Workbook Revision Ex 13)

Solutions


Past year O level questions

Year & paper Comments
2024 P2 Question 11c Show question
2023 P2 Question 5 Find the value of constants A and B
2019 P1 Question 3 Find the value of constants A and B
2017 P2 Question 1 Find the value of constant k


Trigonometry: Principal values Integration techniques
    (Subscription required)