A Maths Revision Notes >>

Integration techniques

Techniques

Constants & single algebraic terms:

If $a$ is constant,

$ \int a \phantom{.} dx = $ $ ax + C $

If $a$ is constant and $n \ne -1$,

$ \int ax^{n} \phantom{.} dx = $ $ {a \over n + 1} x^{n+ 1} + C $

If $a$ is constant,

$ \int ax^{-1} \phantom{.} dx = \int {a \over x} \phantom{.} dx = $ $ a \ln x + C $


Integrate $[ f(x) ]^n $:

If $n \ne -1$,

$ \int [f(x)]^n \phantom{.} dx = $ $ { [f(x)]^{n + 1} \over f'(x). (n + 1) } + C $

$ \int [f(x)]^{-1} \phantom{.} dx = \int {1 \over f(x)} \phantom{.} dx = $ $ {\ln [f(x)] \over f'(x)} + C $


Note: $f'(x)$ is the derivative of $f(x)$


Integrate exponential terms:

$ \int e^{f(x)} \phantom{.} dx = $ $ {e^{f(x)} \over f'(x)} + C $


Note: $f'(x)$ is the derivative of $f(x)$


Integrate trigonometric terms:

$ \int \sin [f(x)] \phantom{.} dx = $ $ {- \cos [f(x)] \over f'(x)} + C $

$ \int \cos [f(x)] \phantom{.} dx = $ $ {\sin [f(x)] \over f'(x)} + C $

$ \int \sec^2 [f(x)] \phantom{.} dx = $ $ {\tan [f(x)] \over f'(x)} + C $


Note: $f'(x)$ is the derivative of $f(x)$


Questions

Definite integrals

Q1. Show that $ \int_0^1 e^{2x} (e^x + e^{-x}) \phantom{.} dx = {e^3 + ae + b \over 3} $, where $a$ and $b$ are integers.

Answer: $ a = 3, b = -4 $

Solutions


Partial fractions

Q2(i) Express $ {x \over (x + 1)(x + 2)^2} $ in partial fractions.

Answer: $ - {1 \over x + 1} + {1 \over x + 2} + {2 \over (x + 2)^2} $

Solutions

Q2(ii) Hence, show that $ \int_0^1 {x \over (x + 1)(x + 2)^2} \phantom{.} dx = \ln {3 \over 4} + {1 \over 3} $.

Solutions


Trigonometry

Note: For differentiation & integration, the angles are always in radians.


Q3(i) Prove that $ 4 \sin^2 x + 6 \cos^2 x = \cos 2x + 5 $.

Solutions

Q3(ii) Using the identity from (i), show that $ \int_{\pi \over 6}^{\pi \over 2} 4 \sin^2 x + 6 \cos^2 x \phantom{.} dx = {5 \over 3} \pi - {\sqrt{3} \over 4} $.

Solutions


Q4. Integrate $ 2 \tan^2 {1 \over 2}x - 3 $ with respect to $x$.

Answer: $ 4 \tan {1 \over 2}x - 5x + c $

Solutions


Show question

Q5. $f(x)$ is such that $f'(x) = \sin 6x + \cos 3x$. Given that $ f \left({\pi \over 6}\right) = {5 \over 6}$, show that

$$ f''(x) + 9 f(x) = {9 \over 2} \cos 6x + 3 $$

(from think! A Maths Workbook Worksheet 14B)

Solutions


Past year O level questions

Year & paper Comments
2024 P1 Question 12 Partial fraction
2021 P1 Question 4 Integrate $ [ f(x) ]^n $
2016 P1 Question 12i, ii (Very interesting question)
2014 P1 Question 8 Show question
2013 P2 Question 5 Trigonometry
2012 P2 Question 3 Partial fraction
2011 P2 Question 8 Partial fraction
2010 P1 Question 2ii Trigonometry (Link)
2009 P2 Question 2 Partial fraction
2006 P2 Question 3 Definite integrals


Differentiation techniques Integration as reverse of differentiation
(Subscription required)