Techniques
Constants & single algebraic terms:
If $a$ is constant,
$ \int a \phantom{.} dx = $
$ ax + C $
If $a$ is constant and $n \ne -1$,
$ \int ax^{n} \phantom{.} dx = $
$ {a \over n + 1} x^{n+ 1} + C $
If $a$ is constant,
$ \int ax^{-1} \phantom{.} dx = \int {a \over x} \phantom{.} dx = $
$ a \ln x + C $
Integrate $[ f(x) ]^n $:
If $n \ne -1$,
$ \int [f(x)]^n \phantom{.} dx = $
$ { [f(x)]^{n + 1} \over f'(x). (n + 1) } + C $
$ \int [f(x)]^{-1} \phantom{.} dx = \int {1 \over f(x)} \phantom{.} dx = $
$ {\ln [f(x)] \over f'(x)} + C $
Note: $f'(x)$ is the derivative of $f(x)$
Integrate exponential terms:
$ \int e^{f(x)} \phantom{.} dx = $
$ {e^{f(x)} \over f'(x)} + C $
Note: $f'(x)$ is the derivative of $f(x)$
Integrate trigonometric terms:
$ \int \sin [f(x)] \phantom{.} dx = $
$ {- \cos [f(x)] \over f'(x)} + C $
$ \int \cos [f(x)] \phantom{.} dx = $
$ {\sin [f(x)] \over f'(x)} + C $
$ \int \sec^2 [f(x)] \phantom{.} dx = $
$ {\tan [f(x)] \over f'(x)} + C $
Note: $f'(x)$ is the derivative of $f(x)$
Questions
Definite integrals
Q1. Show that $ \int_0^1 e^{2x} (e^x + e^{-x}) \phantom{.} dx = {e^3 + ae + b \over 3} $, where $a$ and $b$ are integers.
Answer: $ a = 3, b = -4 $
Solutions
\begin{align*}
\int_0^1 e^{2x} (e^x + e^{-x}) \phantom{.} dx
& = \int_0^1 e^{3x} + e^x \phantom{.} dx
\phantom{000000} [a^m \times a^n = a^{m + n} ] \\
& = \left[ {e^{3x} \over 3} + {e^x \over 1} \right]_0^1 \\
& = { e^{3(1)} \over 3} + e^1 - \left[ {e^{3(0)} \over 3} + e^0 \right] \\
& = { e^3 \over 3 } + e - {1 \over 3} - 1 \\
& = { e^3 \over 3} + {3e \over 3} - {4 \over 3} \\
& = { e^3 + 3e - 4 \over 3} \\
\\
\therefore a & = 3, b = -4
\end{align*}
Partial fractions
Q2(i) Express $ {x \over (x + 1)(x + 2)^2} $ in partial fractions.
Answer: $ - {1 \over x + 1} + {1 \over x + 2} + {2 \over (x + 2)^2} $
Solutions
\begin{align*}
{x \over (x + 1)(x + 2)^2} & = {A \over x + 1} + {B \over x + 2} + {C \over (x + 2)^2} \\
& = {A(x + 2)^2 \over (x + 1)(x + 2)^2} + {B(x + 1)(x + 2) \over (x + 1)(x + 2)^2} + {C(x + 1) \over (x + 1)(x + 2)^2} \\
& = {A(x + 2)^2 + B(x + 1)(x + 2) + C(x + 1) \over (x + 1)(x + 2)^2 } \\
\\
\therefore x & = A(x + 2)^2 + B(x + 1)(x + 2) + C(x + 1) \\
\\
\text{Let } & x = -2, \\
-2 & = A(0)^2 + B(-1)(0) + C(-1) \\
-2 & = -C \\
2 & = C \\
\\
x & = A(x + 2)^2 + B(x + 1)(x + 2) + 2(x + 1) \\
\\
\text{Let } & x = -1, \\
-1 & = A(1)^2 + B(0)(1) + 2(0) \\
-1 & = A + 0 + 0 \\
-1 & = A \\
\\
x & = -(x + 2)^2 + B(x + 1)(x + 2) + 2(x + 1) \\
\\
\text{Let } & x = 0, \\
0 & = -(2)^2 + B(1)(2) + 2(1) \\
0 & = -4 + 2B + 2 \\
2 & = 2B \\
1 & = B \\
\\
\therefore {x \over (x + 1)(x + 2)^2} & = {-1 \over x + 1} + {1 \over x + 2} + {2 \over (x + 2)^2} \\
& = - {1 \over x + 1} + {1 \over x + 2} + {2 \over (x + 2)^2}
\end{align*}
Q2(ii) Hence, show that $ \int_0^1 {x \over (x + 1)(x + 2)^2} \phantom{.} dx = \ln {3 \over 4} + {1 \over 3} $.
Solutions
\begin{align*}
\int {x \over (x + 1)(x + 2)^2} \phantom{.} dx
& = \int - {1 \over x + 1} + {1 \over x + 2} + {2 \over (x + 2)^2} \phantom{.} dx \\
& = \int - {1 \over x + 1} + {1 \over x + 2} + 2(x + 2)^{-2} \phantom{.} dx \\
& = - { \ln (x + 1) \over 1} + {\ln (x + 2) \over 1} + {2 (x + 2)^{-1} \over (-1)(1)} \\
& = - \ln (x + 1) + \ln (x + 2) - 2(x + 2)^{-1} \\
& = \ln (x + 2) - \ln (x + 1) - {2 \over x + 2} \\
& = \ln {x +2 \over x + 1} - {2 \over x + 2} \phantom{000000} [\text{Quotient law (logarithms)}] \\
\\
\therefore \int_0^1 {x \over (x + 1)(x + 2)^2} \phantom{.} dx
& = \left[ \ln {x +2 \over x + 1} - {2 \over x + 2} \right]_0^1 \\
& = \ln {3 \over 2} - {2 \over 3} - \left( \ln 2 - 1 \right) \\
& = \ln {3 \over 2} - \ln 2 - {2 \over 3} + 1 \\
& = \ln { {3 \over 2} \over 2 } + {1 \over 3} \\
& = \ln {3 \over 4} + {1 \over 3} \phantom{0} \text{ (Shown)}
\end{align*}
Trigonometry
Note: For differentiation & integration, the angles are always in radians.
Q3(i) Prove that $ 4 \sin^2 x + 6 \cos^2 x = \cos 2x + 5 $.
Solutions
\begin{align*}
4 \sin^2 x + 6 \cos^2 x
& = 2 (2 \sin^2 x) + 3(2 \cos^2 x) \\
& = 2 (1 - \cos 2x) + 3(2 \cos^2 x)
\phantom{000000} [ \cos 2A = 1 - 2 \sin^2 A \implies 2 \sin^2 A = 1 - \cos 2A] \\
& = 2 - 2 \cos 2x + 3 (\cos 2x + 1)
\phantom{00000} [\cos 2A = 2 \cos^2 A - 1 \implies 2 \cos^2 A = \cos 2A + 1] \\
& = 2 - 2 \cos 2x + 3 \cos 2x + 3 \\
& = \cos 2x + 5 \phantom{0} \text{ (Shown)}
\end{align*}
Q3(ii) Using the identity from (i), show that $ \int_{\pi \over 6}^{\pi \over 2} 4 \sin^2 x + 6 \cos^2 x \phantom{.} dx = {5 \over 3} \pi - {\sqrt{3} \over 4} $.
Solutions
\begin{align*}
\int_{\pi \over 6}^{\pi \over 2} 4 \sin^2 x + 6 \cos^2 x \phantom{.} dx
& = \int_{\pi \over 6}^{\pi \over 2} \cos 2x + 5 \phantom{.} dx \\
& = \left[ {\sin 2x \over 2} + 5x \right]_{\pi \over 6}^{\pi \over 2} \\
& = \left[ {1 \over 2} \sin 2x + 5x \right]_{\pi \over 6}^{\pi \over 2} \\
& = {1 \over 2} \sin \pi + 5 \left(\pi \over 2\right)
- \left[ {1 \over 2} \sin {\pi \over 3} + 5 \left(\pi \over 6\right) \right] \\
& = {1 \over 2} (0) + {5 \over 2} \pi - {1 \over 2} \left(\sqrt{3} \over 2\right) - {5 \over 6} \pi \\
& = {5 \over 2} \pi - {5 \over 6} \pi - {\sqrt{3} \over 4} \\
& = {5 \over 3} \pi - {\sqrt{3} \over 4} \phantom{0} \text{ (Shown)}
\end{align*}
Q4. Integrate $ 2 \tan^2 {1 \over 2}x - 3 $ with respect to $x$.
Answer: $ 4 \tan {1 \over 2}x - 5x + c $
Solutions
\begin{align*}
2 \tan^2 {1 \over 2}x - 3 & = 2 \left( \sec^2 {1 \over 2}x - 1 \right) - 3
\phantom{000000} [\tan^2 A + 1 = \sec^2 A \implies \tan^2 A = \sec^2 A - 1] \\
& = 2 \sec^2 {1 \over 2}x - 2 - 3 \\
& = 2 \sec^2 {1 \over 2}x - 5 \\
\\
\therefore \int 2 \sec^2 {1 \over 2}x - 5 \phantom{.} dx
& = {2 \tan {1 \over 2}x \over {1 \over 2} } - 5x \\
& = 4 \tan {1 \over 2}x - 5x + c
\end{align*}
Show question
Q5. $f(x)$ is such that $f'(x) = \sin 6x + \cos 3x$. Given that $ f \left({\pi \over 6}\right) = {5 \over 6}$, show that
$$ f''(x) + 9 f(x) = {9 \over 2} \cos 6x + 3 $$
(from think! A Maths Workbook Worksheet 14B)
Solutions
\begin{align*}
f'(x) & = \sin 6x + \cos 3x \\
\\
f''(x) & = 6 \cos 6x + (3)(-\sin 3x)
\phantom{000000} [\text{Differentiate } f'(x)] \\
& = 6 \cos 6x - 3 \sin 3x \\
\\
f(x) & = \int f'(x) \phantom{.} dx \\
& = \int \sin 6x + \cos 3x \phantom{.} dx \\
& = {-\cos 6x \over 6} + {\sin 3x \over 3} \\
& = - {1 \over 6} \cos 6x + {1 \over 3} \sin 3x + c \\
\\
\text{Since } & f \left({\pi \over 6}\right) = {5 \over 6}, \\
{5 \over 6} & = -{1 \over 6} \cos \pi + {1 \over 3} \sin {\pi \over 2} + c \\
{5 \over 6} & = {1 \over 6} + {1 \over 3} + c \\
{1 \over 3} & = c \\
\\
f(x) & = - {1 \over 6} \cos 6x + {1 \over 3} \sin 3x + {1 \over 3} \\
\\ \\
f''(x) + 9 f(x) & = 6 \cos 6x - 3 \sin 3x + 9 \left( - {1 \over 6} \cos 6x + {1 \over 3} \sin 3x + {1 \over 3} \right) \\
& = 6 \cos 6x - 3 \sin 3x - {3 \over 2} \cos 6x + 3 \sin 3x + 3 \\
& = {9 \over 2} \cos 6x + 3 \phantom{0} \text{ (Shown)}
\end{align*}
Past year O level questions
Year & paper |
Comments |
2024 P1 Question 12 |
Partial fraction |
2021 P1 Question 4 |
Integrate $ [ f(x) ]^n $ |
2016 P1 Question 12i, ii |
(Very interesting question) |
2014 P1 Question 8 |
Show question |
2013 P2 Question 5 |
Trigonometry |
2012 P2 Question 3 |
Partial fraction |
2011 P2 Question 8 |
Partial fraction |
2010 P1 Question 2ii |
Trigonometry (Link) |
2009 P2 Question 2 |
Partial fraction |
2006 P2 Question 3 |
Definite integrals |
← Differentiation techniques
Integration as reverse of differentiation →
(Subscription required)