H2 Maths Formulas, Techniques & Graphs >> Functions and Graphs >> Functions >>
f-1f and f f-1
Composite function f-1f
The composite function $f^{-1} f$ is defined as: $$ \boxed{ f^{-1} f(x) = x } $$
The domain and range are $$ \boxed{ D_{f^{-1} f } = D_f }$$ $$ \boxed{ R_{f^{-1} f } = D_f } $$
Example
Given $$ g : x \mapsto e^x, \phantom{000} x \in \mathbb{R}, 0 < x \le 1 $$
and $$ D_g = (0, 1] \text{ and } R_g = (1, e] $$
The composite function $g^{-1} g$ is defined as $$ g^{-1} g (x) = x $$ $$ D_{g^{-1}g} = (0, 1] $$ $$ R_{g^{-1}g} = (0, 1] $$
The graph of $y = g^{-1} g$ is:
Composite function f f-1
The composite function $f f^{-1}$ is defined as: $$ \boxed{ f f^{-1}(x) = x } $$
The domain and range are $$ \boxed{ D_{f f^{-1} } = D_{f^{-1}} }$$ $$ \boxed{ R_{f f^{-1} } = D_{f^{-1}} } $$
Example
Given $$ g : x \mapsto e^x, \phantom{000} x \in \mathbb{R}, 0 < x \le 1 $$
and $$ D_g = (0, 1] \text{ and } R_g = (1, e] $$
The composite function $g g^{-1}$ is defined as $$ g g^{-1} (x) = x $$ $$ D_{g g^{-1}} = D_{g^{-1}} = R_g = (1, e] $$ $$ R_{g g^{-1}} = D_{g^{-1}} = R_g = (1, e] $$
The graph of $y = g g^{-1}$ is:
More on Functions:
Functions
Inverse function
Composite functions
Other concepts (on Functions)